Local monodromy of A-motives

M. Morney*

EPFL

Second Joint Congress of AMS-EMS-SMF Grenoble 2022

* Supported by Swiss National Science Foundation (SNSF Ambizione project 202119)

Local Galois groups

K a local field of residual characteristic p, $G = Gal(K^{sep}/K)$

$$G/I = \widehat{\mathbb{Z}}$$

$$I/P = \widehat{\mathbb{Z}}^{(p)}(1)$$

$$P = \text{ free pro-}p\text{-group on }\aleph_0 \text{ generators}$$

$$\text{pro-nilpotent} = \text{pro}_n \big\{ \left[g_1, \left[g_2, \left[\dots, g_n \right] \cdots \right] = 1 \right. \big\}$$

ℓ-adic local monodromy

$$\ell \neq p$$

"punctured disk"
$$\bigvee_{\eta \colon \mathsf{Spec}\, K} \mathsf{K} \xrightarrow{\mathsf{Y}} H^i(X_\eta, \, \mathbb{Z}_\ell) \overset{\boldsymbol{\smile}}{\smile} \mathsf{G}$$

ℓ-adic monodromy theorem (Grothendieck)

Up to a finite separable extension L/K each ℓ -adic representation $\rho \colon G \to \operatorname{GL}(V)$ satisfies:

- 1. $\rho(P) = \{1\},\$
- 2. $\rho|_I$ is unipotent.
- i. open ℓ -Sylow subgroup $\subset \mathsf{GL}_n(\mathbb{Z}_\ell)$
- ii. $\rho(P) = \{1\}, \quad \rho(I/P) = \rho(\mathbb{Z}_{\ell}(1))$
- iii. Grothendieck's trick: $ho|_{\mathbb{Z}_\ell(1)}$ unipotent via $\widehat{\mathbb{Z}}\ltimes\mathbb{Z}_\ell(1)$

Weil-Deligne representations

$$\mathfrak{g}=\mathsf{Lie}\,\mathbb{Z}_\ell(1),\quad \mathit{N}\colon \mathfrak{g} o\mathfrak{gl}(\mathit{V}) \ \mathsf{independent} \ \mathsf{of} \ \mathit{L}/\mathit{K}$$

Deligne's construction WD: $\rho \mapsto (\widetilde{\rho}, N)$

The representation ρ is

- ▶ twisted by $\exp \circ (-N) \circ \pi$,
- ▶ restricted to the *Weil group* $W \subset G$.

$$\pi\colon G \twoheadrightarrow \mathbb{Z}_{\ell}(1) \hookrightarrow \mathfrak{g}.$$

Theorem (Deligne)

The functor WD is an equivalence of categories of

- ▶ ℓ-adic Galois representations,
- ▶ ℓ-adic Weil-Deligne representations "of slope 0".

The ℓ -independence conjecture

 $WD(\rho)$ is continuous in the discrete topology on \mathbb{Q}_{ℓ} \leadsto can replace \mathbb{Q}_{ℓ} by any field of characteristic 0.

Primes $\ell, \ell' \neq p$, field $F \supset \mathbb{Q}_{\ell}, \mathbb{Q}_{\ell'}$.

Conjecture

For each smooth proper $X/\operatorname{Spec} K$, each $i\geqslant 0$ there is a natural isomorphism

$$F \otimes_{\mathbb{Q}_{\ell}} \mathsf{WD} \left(H^i(X_{\eta}, \mathbb{Q}_{\ell}) \right) \xrightarrow{\sim} F \otimes_{\mathbb{Q}_{\ell'}} \mathsf{WD} \left(H^i(X_{\eta}, \mathbb{Q}_{\ell'}) \right).$$

Some known cases: abelian varieties, K3 surfaces. Trivial case (assuming semi-simplicity): X has good reduction.

Drinfeld modules

$$\downarrow^{E} \qquad \qquad \downarrow^{K} \qquad \downarrow$$

 $\mathfrak p$ different from the residual characteristic: " $\ell \neq p$ ".

$$|\rho(P)| < \infty \Leftrightarrow E$$
 has potential good reduction

- 1. $|\rho(P)| < \infty$
- 2. $\mathsf{GL}_n(\mathbb{F}_q[[z]])$ has an open $p ext{-Sylow} \Rightarrow |\rho(I)| < \infty$
- 3. Takahashi: E has potential good reduction

z-adic Galois representations I

Idea: find an " ℓ -like" class of z-adic representations

Ground field \mathbb{F}_q , coefficient field \widehat{F} , ring of integers $\mathcal{O}_{\widehat{F}}$, e.g. $\widehat{F} = \mathbb{F}_q((z))$, $\mathcal{O}_{\widehat{F}} = \mathbb{F}_q[[z]]$

Ring of definition

$$\Gamma = \Gamma_{\mathsf{K}} = \mathsf{K} \, \widehat{\otimes}_{\mathbb{F}_q} \, \mathcal{O}_{\widehat{\mathsf{F}}}$$

Discrete topology on K, e.g. $\Gamma = K[[z]]$. Partial Frobenius $\sigma \colon \Gamma \to \Gamma$, e.g. $\sigma(\sum a_n z^n) = \sum a_n^q z^n$.

Definition

A unit-root Γ -crystal M is a pair consisting of

- ▶ a finitely generated free Γ -module M,
- ▶ an isomorphism $a: \sigma^*M \xrightarrow{\sim} M$, called the *structure isomorphism*.

Morphisms = σ -equivariant morphisms of Γ -modules.

z-adic Galois representations II

$$T(M) = \{ x \in \Gamma_{K^{\mathsf{sep}}} \otimes_{\Gamma_{K}} M \mid a_{M}(1 \otimes x) = x \}$$

Theorem (Katz)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- ightharpoonup unit-root Γ_K -crystals,
- **ightharpoonup** continuous representations of G in finite free $\mathcal{O}_{\widehat{F}}$ -modules.

$$\Gamma_{+} = \mathcal{O}_{K} \widehat{\otimes}_{\mathbb{F}_{q}} \mathcal{O}_{\widehat{F}}$$

Theorem (folklore)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- ightharpoonup unit-root Γ_+ -crystals,
- unramified representations of G in finite free $\mathcal{O}_{\widehat{F}}$ -modules.

z-adic Galois representations III

$$\Gamma^b = K \otimes_{\mathcal{O}_K} \Gamma_+$$

Theorem (M.)

The base change functor $\Gamma^b \mapsto \Gamma$ is fully faithful.

A-motive M over $A_K = K \otimes_{\mathbb{F}_q} A \leadsto$ for all $\mathfrak{p} \neq \mathsf{char}$. a unit-root Γ -crystal

$$M_{\mathfrak{p}} = \Gamma_{K,F_{\mathfrak{p}}} \otimes_{A_K} M$$

 $T(M_{\mathfrak{p}}) = \mathfrak{p}$ -adic Tate module of M

Proposition (M.)

 $M_{\mathfrak{p}}$ is defined over Γ^b for each $\mathfrak{p} \neq \text{res. char.}$

z-adic local monodromy

Extra structure on the inertia group 1: upper index ramification filtration

$$I^{(\nu)}, \quad \nu \in \mathbb{Q}_{\geqslant 0}$$

$$I = I^{(0)}, \ P = I^{(0+)} = \mathsf{closure}\left(\bigcup_{\nu>0} I^{(\nu)}\right)$$

z-adic monodromy theorem, case " $\ell \neq p$ " (M.)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- ightharpoonup unit-root Γ^b -crystals, and
- ▶ Galois representations ρ : $G \to GL(V)$ which satisfy the following up to a finite separable extension L/K:
 - 1. $\rho(I^{(\nu)}) = \{1\} \text{ for } \nu \gg 0,$
 - 2. $\rho|_I$ is unipotent.

Applications I

Theorem (M.)

For each A-motive M, each $\mathfrak{p}\neq \mathrm{res.}$ char. there is a finite separable extension L/K such that

I acts unipotently on $T_{\mathfrak{p}}M$

Theorem (M.)

For every A-motive M there is a number $\nu \geqslant 0$ such that

 $I^{(\nu)}$ acts trivially on all $T_{\mathfrak{p}}M$, $\mathfrak{p}\neq \text{res. char.}$

Applications II

Corollary

For each Drinfeld A-module E there is a minimal number $\nu\geqslant 0$ such that $I^{(\nu)}$ acts trivially on all $T_{\mathfrak{p}}E$, $\mathfrak{p}\neq \text{res.}$ char. Furthermore ν is an integer whenever E has stable reduction.

Object	Monodromy $ ho(I)$
Algebraic variety	virtually cyclic
Drinfeld module	virtually abelian
A-motive	virtually nilpotent

z-adic de Rham representations

$$\Gamma^m = (\Gamma_+)_{(z)}$$

Unit-root Γ^m -crystals generalize local shtukas and unit-root Γ^b -crystals.

theorem (M.)

The base change $\Gamma^m \to \Gamma$ is fully faithful.

Definition

A z-adic representation is de Rham if it arises from Γ^m .

theorem (M.)

Every unit-root Γ^m -crystal becomes an iterated extension of local shtukas after a finite separable extension L/K.

z-adic de Rham representations are potentially semistable