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1 Hodge theory on Riemannian manifolds

1.1 Hodge star

Let V be a R-vector space of dimension n, and g : V ×V → R a positive-definite
inner product. One can naturally extend g to all exterior powers ΛkV . Namely,
on pure tensors

g(v1 ∧ v2 ∧ . . . ∧ vk, w1 ∧ w2 ∧ . . . ∧ wk) = det g(vi, wj).

If {ei}ni=1 is an orthonormal basis of V then

{ei1 ∧ ei2 ∧ . . . ∧ eik}16i1<i2<...<ik6k

is an orthonormal basis of ΛkV .

Next, choose a volume form Vol ∈ ΛnV , i.e. a vector satisfying g(Vol,Vol) = 1.
There are exactly two choices, differing by sign.

Definition 1.1.1. Let v ∈ ΛkV be a vector. The Hodge star ?v ∈ Λn−kV of v
is the vector which satisfies the equation

u ∧ ?v = g(u, v) Vol .

for all u ∈ ΛkV .

Proposition 1.1.2. The Hodge star has the following properties:

(1) For every k ∈ ΛkV the vector ?v exists and is unique. The map ? : ΛkV →
Λn−kV is an isomorphism of vector spaces.

(2) Choose an orthonormal basis {ek}nk=1 of V . Let 〈n〉 denote the set {1, . . . , n}.
For I ⊂ 〈n〉 of cardinality k define eI to be the tensor ei1 ∧ ei2 ∧ . . . ∧ eik where
0 6 i1 < i2 < . . . < ik 6 n are the elements of I.

With such notation, if I ⊂ 〈n〉 then

?eI = ±e〈n〉\I .

(3) The map ? : ΛkV → Λn−kV is an isometry.

(4) ?? = (−1)k(n−k) on ΛkV .

Proof. (1) Follows since both pairings ∧ : ΛkV ×Λn−kV → ΛnV , and g : ΛkV ×
ΛkV → R are nondegenerate.

(2) Notice that Vol ∈ {e〈n〉,−e〈n〉}. Hence eI ∧ e〈n〉\I = ±Vol. If J ⊂ 〈n〉 is a
subset of size n−#I different from 〈n〉\I, then tensors eI , and eJ have a basis
vector in common, so eJ ∧ e〈n〉\I = 0.
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(3) Follows from (2) because ? sends an orthonormal basis, to an orthonormal
basis.

(4) Indeed, for every w, v ∈ ΛkV

(w, v) Vol = g(?w, ?v) Vol = ?w ∧ ??v = (−1)k(n−k)??v ∧ ?w =

(−1)k(n−k)(??v, w) Vol = (−1)k(n−k)g(w, ??v) Vol .

1.2 The Laplacian

Let (X, g) be a compact oriented Riemannian manifold of dimension n with
volume form Vol. Extend g to all bundles ΩkX of differential forms, and define
Hodge stars ? : Ωk

X → Ωn−k
X in fiberwise manner. Let Ak(X) be the space of

global smooth k-forms. Define an inner product on forms α, β ∈ Ak(X) as

(α, β) =

∫
X

α ∧ ?β =

∫
X

gx(αx, βx) Vol .

This product is positive-definite. Unless X is a point the R-vector space Ak(X)
is infinite-dimensional, and (, ) induces an injective map Ak(X) → Ak(X)∗

which is not surjective (e.g. consider a linear functional which send a function
f ∈ A0(X) to its value at a chosen point).

Definition 1.2.1. Let d : Ak(X) → Ak+1(X) be the de Rham differential.
Define an operator d∗ : Ak+1(X)→ Ak(X) as

d∗ = −(−1)kn?d?.

Proposition 1.2.2. For every α ∈ Ak(X), β ∈ Ak+1(X) there is an equality

(dα, β) = (α, d∗β).

In other words d∗ is adjoint to d.

Proof. By Stokes theorem, and Leibniz rule

0 =

∫
X

d(α ∧ ?β) =

∫
X

dα ∧ ?β + (−1)k
∫
X

α ∧ d?β.

Moreover,

(−1)k
∫
X

α ∧ d?β = (−1)k+k(n−k)

∫
X

α ∧ ??d?β.

Therefore

(dα, β) =

∫
X

dα ∧ ?β = −(−1)kn
∫
X

α ∧ ??d?β = (α, d∗β).
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Definition 1.2.3. The Laplace operator ∆: Ak(X)→ Ak(X) is defined as

∆ = dd∗ + d∗d.

∆ commutes with d, so it is an endomorphism of the de Rham complex A•(X).
Moreover, ∆ is homotopy equivalent to zero via d∗ by construction. Here is a
picture:

Ak+1(X)

d∗

))

Ak+1(X)

Ak(X)

d

OO

d∗

))

dd∗+d∗d // Ak(X)

d

OO

Ak−1(X)

d

OO

Ak−1(X).

d

OO

Definition 1.2.4. A form α ∈ Ak(X) is called harmonic, if ∆α = 0. The space
of such forms is denoted Hk(X).

Let us compute ∆ on R2 with its standard Riemannian metric. Of course, R2 is
not compact, so our definition of inner product on A•(R2) does not make sense.
But Hodge stars are well-defined.

Let x, y be coordinates on R2, and let Vol = dx ∧ dy. Then

?dx = dy, ?dy = −dx.

If f ∈ A0(X) then d∗f = 0 by reasons of dimension, so ∆f = d∗df . Next,

df =
∂f

∂x
dx+

∂f

∂y
dy,

?df =
∂f

∂x
dy − ∂f

∂y
dx,

d?df =
∂2f

∂x2
dx ∧ dy +

∂2f

∂y2
dx ∧ dy,

?d?df =
∂2f

∂x2
+
∂2f

∂y2
,

∆f = −
(∂2f

∂x2
+
∂2f

∂y2

)
.

This explains the name “Laplacian”, and the term “harmonic”.

1.3 Main theorem

Theorem 1.3.1 (Main theorem of Hodge theory). Consider the Laplace oper-
ator ∆: Ak(X)→ Ak(X).
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(1) There is an orthogonal direct sum decomposition

Ak(X) = Hk(X)⊕ Im ∆.

(2) dimRHk(X) <∞.

We will not prove this theorem since its proof uses advanced tools of functional
analysis. The key ingredient of the proof is the fact that ∆ is a self-adjoint
elliptic differential operator. Using theory of such operators one obtains the
main theorem as a formal consequence. Those who are interested in more details
are invited to read Demailly’s excellent account of analytic methods in complex
geometry [2].

Corollary 1.3.2. (1) The de Rham complex A•(X) decomposes into an orthog-
onal direct sum

A•(X) = H•(X)⊕ Im ∆.

(2) H•(X) is a complex of finite-dimensional vector spaces with zero differen-
tials, and d∗ is zero on it.

(3) Im ∆ is homotopy equivalent to zero.

Proof. (1) Indeed, ∆ is an endomorphism of A•(X), so decompositions of indi-
vidual terms give rise to a decomposition of the whole complex.

(2) Observe that

(α,∆α) = (α, dd∗α) + (α, d∗dα) = ‖d∗α‖2 + ‖dα‖2.

Hence, if ∆α = 0, then dα = 0, and d∗α = 0.

(3) The kernel of ∆ is orthogonal to its image, so ∆|Im ∆ is injective. Moreover
∆|Im ∆ is surjective, since writing a form α as β + ∆γ with β harmonic, we
obtain a formula ∆α = ∆(∆γ). The inverse1of ∆ automatically commutes with
d, so ∆ is an automorphism of Im ∆.

Since ∆ commutes with d∗ the map d∗ defines a homotopy on Im ∆. By con-
struction,

∆ = dd∗ + d∗d.

Thus an automorphism of Im ∆ is homotopy equivalent to zero, which forces
the complex itself to be homotopy equivalent to zero.

Corollary 1.3.3. The map Hk(X) → Hk(X,R) sending a harmonic form to
its cohomology class is an isomorphism.

Proof. Omitted.

1This inverse is called the Green operator, and denoted G.
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Remark 1.3.4. Informally speaking, with Hodge theory one can transfer struc-
tures from the de Rham complex to its cohomology even if these structures do
not pass to cohomology directly. For example, Hodge stars give isomorphisms
? : Hk(X) → Hn−k(X), and one can deduce Poincaré duality for X with coef-
ficients in R from this despite the fact that Hodge stars do not commute with
the de Rham differential.

Remark 1.3.5. Wedge product of harmonic forms is not harmonic in general.

2 Hodge theory on complex manifolds

2.1 Almost-complex structures

Definition 2.1.1. An almost-complex structure on an R-vector space V is an
endomorphism I : V → V such that I2 = −1.

Proposition 2.1.2. Let (V, I) be an R-vector space with almost-complex struc-
ture, and let VC = V ⊗R C. Extend I to VC as a C-vector space endomorphism.

(1) There is a decomposition

VC = V 1,0 ⊕ V 0,1

where V 1,0 is the i-eigenspace, and V 0,1 the (−i)-eigenspace of I.

(2) Define a complex conjugation on VC = V ⊗R C via C. Complex conjugation
induces an R-vector space isomorphism V 1,0 → V 0,1. In particular,

dimR V = dimC V
1,0 = dimC V

0,1,

and dimR V is even.

Proof. (1) Consider endomorphisms π1,0 = 1
2 (id−iI), π0,1 = 1

2 (id +iI) of VC,
and let V 1,0 = π1,0(VC), V 0,1 = π0,1(VC). A simple computation shows that
π1,0,π0,1 define a decomposition of VC, and that V 1,0, V 0,1 so defined are re-
spective eigenspaces of I.

(2) Complex conjugation commutes with I. Hence it sends the i-eigenspace of
I to (−i)-eigenspace, and vice versa. Since applying complex conjugation twice
gives an identiy endomorphism, we obtain what we need.

Proposition 2.1.3. Let (V, I) be an R-vector space with almost-complex struc-
ture.
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(1) Let V p,q = ΛpV 1,0 ⊗C ΛqV 0,1. There is a natural decomposition

ΛkVC =
⊕

p+q=k

V p,q.

(2) Extend I to ΛkVC by linearity. Then

I|V p,q = ip−q.

Proof. Part (1) follows from the fact that given two vector spaces U , W we get
a natural decomposition

Λk(U ⊕W ) =
⊕

p+q=k

ΛpU ⊗ ΛqW.

Part (2) is a simple computation.

Definition 2.1.4. Let (V, I) be an R-vector space with almost-complex struc-
ture. Elements of ΛkVC belonging to V p,q are said to be of type (p, q).

If (V, I) is an R-vector space with almost-complex structure, then one can extend
I to the dual V ∗ by setting I(ϕ) = ϕ◦I. One easily verifies that there are natural
isomorphisms (V ∗)1,0 = (V 1,0)∗, and (V ∗)0,1 = (V 0,1)∗.

2.2 De Rham differential

Recall that a complex manifold X of complex dimension n is a topological
manifold X equipped with a complex structure, that is,

(1) an open covering {Ui}i∈I whose elements are called charts,

(2) for each chart a homeomorphism zi : Ui → Vi ⊂ Cn to an open subset of Cn

called a coordinate system at Ui,

(3) such that all the resulting transition maps zij : Vi ∩ Vj → Vi ∩ Vj are holo-
morphic.

Equivalently, a complex manifold X is a ringed space (X,OX) such that

(1) X is a second countable compact Hausdorff topological space,

(2) OX is a sheaf of C-algebras, and (X,OX) is locally isomorphic to (V,OV )
over C, where V ⊂ Cn is an open subset, and OV is the sheaf of holomorphic
functions on V .

A complex manifold X is a fortiori a smooth manifold, since each complex
coordinate z : U → C, U ⊂ X, gives rise to a pair of real coordinates x, y : U → R
defined by equation z = x + iy. Therefore X has a real tangent bundle, which
we will denote TX,R.
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Proposition 2.2.1. Let X be a complex manifold of complex dimension n. Its
real tangent bundle TX,R has a canonical almost-complex structure I : TX,R →
TX,R defined as follows.

Let x ∈ X be a point. Pick a chart U ⊂ X containing x, with holomorphic
coordinates {zk : U → C}nk=1. Let xk, yk be real coordinates defined by equation
zk = xk + iyk. Define I on the fiber of TX,R at x via formulas

I
( ∂

∂xk

)
=

∂

∂yk
, I

( ∂

∂yk

)
= − ∂

∂xk
.

Proof. Consider two identifications TX,x
∼= R2n given by coordinate systems

(zi)
n
i=1, and (wi)

n
i=1. The fact that the transition map from (zi) to (wi) is

holomorphic at x means precisely that its differential R2n → R2n at x commutes
with I’s on both sides, and hence the definition of I on TxX is independent of
the choice of coordinate system. The fact that I is smooth follows from the fact
that coordinates are smooth.

We thus obtain an almost complex structure on TX,R. By duality we get an
almost complex structure on Ω1

X,R, and a decomposition

Ωk
X,C =

⊕
p+q=k

Ωp,q
X

where Ωk
X,C = Ωk

X,R ⊗R C, and Ωp,q
X = ΛpΩ1,0

X ⊗ ΛqΩ0,1
X . We define Ap,q(X) as

the space of global smooth sections of Ωp,q
X . Such sections are called forms of

type (p, q).

In the context of complex manifolds we will use notation Ak(X) for the global
sections of Ωk

X,C, i.e. complex-valued forms.

The de Rham differential d : Ω•X,R → Ω•+1
X,R extends complex-linearly to a differ-

ential d : Ω•X,C → Ω•+1
X,C.

Proposition 2.2.2. (1) The de Rham differential d : Ωp,q
X → Ωp+q+1

X,C decom-
poses as

d = ∂ + ∂̄,

where ∂ : Ωp,q
X → Ωp+1,q

X is of bidegree (1, 0), and ∂̄ : Ωp,q
X → Ωp,q+1

X is of bidegree
(0, 1).

(2) The following identities hold:

∂2 = 0, ∂∂̄ + ∂̄∂ = 0, ∂̄2 = 0.
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Proof. (1) We will do it for (p, q) = (1, 0), the rest being done by analogy.

Pick a chart U ⊂ X, and a holomorphic coordinate system z : U → V ⊂ Cn.
Let zk : U → C be the coordinates. Write zk = xk + iyk. By definition dzk =
dxk + idyk. We also have complex-valued smooth functions z̄k = xk − iyk, and
differentials dz̄k. Observe that

1

2
(dzk + dz̄k) = dxk,

1

2i
(dzk − dz̄k) = dyk.

Thus {dzk, dz̄k}nk=1 form a basis of smooth sections of Ω1
X,C over U . By definition

of I we have equalities

I(dxk) = −dyk, I(dyk) = dxk,

so
I(dzk) = idzk, I(dz̄k) = −idz̄k.

As a consequence Ω1,0
U ⊂ Ω1

U,C is precisely the subbundle spanned by {dzk}nk=1.

If f : U → C is a smooth function, then df is a section of Ω1
X,C over U , so Leibniz

rule shows that d(fdzk) is a section of Ω2,0
X ⊕ Ω1,1

X .

(2) follows since d2 = 0.

Remark 2.2.3. An almost-complex manifold is a smooth manifold X, neces-
sarily of even R-dimension, together with an endomorphism I : TX,R → TX,R
satisfying I2 = −1. There are decompositions Ωk

X,C =
⊕

p+q=k Ωp,q
X . The de

Rham differential d : Ω1,0
X → Ω2

X,C = Ω2,0
X ⊕ Ω1,1

X ⊕ Ω0,2
X splits into three parts

d2,0 = ∂, d1,1 = ∂̄, and d0,2. On a general almost-complex manifold the differ-
ential d0,2 can be nonzero. In fact, d0,2 = 0 if and only if X has a necessarily
unique complex structure compatible with I (Newlander-Nirenberg theorem).
The condition d0,2 = 0 is equivalent to the condition that Lie bracket of two
complex vector fields of type (1, 0) is again of type (1, 0).

Definition 2.2.4. The sheaf of holomorphic p-forms Ωp
X is defined as

Ωp
X(U) = {α ∈ Ap,0(U) | ∂̄α = 0},

where U ⊂ X is an open subset.

Lemma 2.2.5 (∂̄-Poincaré lemma). The complex of sheaves

0→ Ωp
X → Ωp,0

X
∂̄−→ Ωp,1

X
∂̄−→ . . .

is exact.

Proof. See [9], p. 60, proposition 2.31.

The complexes (Ap,•(X), ∂̄), 0 6 p 6 n, are called Dolbeault complexes.
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Theorem 2.2.6 (Dolbeault). There is a natural isomorphism

Hq(Ap,•(X), ∂̄)→ Hq(X,Ωp
X).

Proof. The sheaves of smooth sections of Ωp,q
X are fine, and the complex (Ωp,•

X , ∂̄)
is a resolution of Ωp

X .

2.3 Hermitian metrics

Let (V, I) be an R-vector space of dimension 2n with almost-complex structure.

Definition 2.3.1. A positive-definite inner product g : V × V → R is called an
hermitian metric on (V, I) if I is an isometry with respect to g.

Remark 2.3.2. If I is not necessarily an isometry, then one can consider an
average

g1(u, v) =
1

4

3∑
k=0

g(Iku, Ikv).

The average g1 is still a positive-definite inner product, and I is an isometry
with respect to g1.

Extend the induced metric g on ΛkV to a hermitian form h on ΛkVC using the
rule

h(u⊗ z, v ⊗ w) = uwg(u, v),

pick2 a volume form Vol ∈ Λ2nV , and extend real Hodge stars ? to ΛkVC
complex-linearly.

Proposition 2.3.3. (1) The Hodge star ? : ΛkVC → Λ2n−kVC satisfies

u ∧ ?v = h(u, v) Vol .

(2) ?(Λp,qV ) = Λn−q,n−pV .

Proof. (1) Omitted.

(2) Since g is I-invariant, h is I-invariant too. Therefore the decomposition
VC = V 1,0 ⊕ V 0,1 is orthogonal. It follows that vectors of different types are
orthogonal with respect to h.

Consider a decomposition by types:

?v =
∑

r+s=k

vn−r,n−s.

2In a moment we will see that there is a canonical choice of a volume form.
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Suppose that for some r, s the component vn−r,n−s is nonzero. Since the wedge
product pairing V r,s × V n−r,n−s → V n,n is nondegenerate there exists u ∈ Λr,s

such that u ∧ vn−r,n−s 6= 0. If r′, s′ are such that r + r′ + s + s′ = 2n, but
r+r′ 6= n or s+s′ 6= n, then u∧vn−r′,n−s′ = 0. Therefore u∧?v = u∧vn−r,n−s.
On the other hand, u ∧ ?v = h(u, v) Vol can be nonzero only if r = p, s = q.
Hence ?v ∈ V n−p,n−q.

Let X be a complex manifold of complex dimension n, and let g be a Riemannian
metric on TX,R which is hermitian with respect to the canonical almost-complex
structure I : TX,R → TX,R. Applying the construction above we obtain hermi-
tian metrics and Hodge stars on Ωp,q

X , and consequently on Ap,q(X).

Proposition 2.3.4. The operators

∂∗ = − ? ∂̄?, ∂̄∗ = − ? ∂ ? .

are adjoint to ∂, and ∂̄ respectively.

Proof. We will do it for ∂̄. If α is of type (p, q− 1), and β is of type (p, q), then
the expression

dα ∧ ?β + (−1)p+qα ∧ d?β (1)

expands to
∂̄α ∧ ?β + (−1)p+q−1α ∧ ∂̄?β,

because all terms with ∂ vanish by reason of type. Now, (1) is equal to d(α∧?β)
by Leibniz rule, so Stokes theorem gives∫

X

∂̄α ∧ ?β = −(−1)p+q−1

∫
X

α ∧ ∂̄?β.

The term on the left is (∂̄α, β). The term on the right is equal to

−
∫
X

α ∧ ??∂̄?β.

Notice that ? commutes with complex conjugation, and that complex conjugate
of ∂̄ is ∂. Therefore the term on the right is equal to

−
∫
X

α ∧ ??∂?β,

that is (α, ∂̄∗β).

Definition 2.3.5. Define Laplacians ∆,∆∂ , ∆∂̄ as

∆ = dd∗ + d∗d, ∆∂ = ∂∂∗ + ∂∗∂, ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄,

and let
Hp,q(X) = {α ∈ Ap,q(X) | ∆∂̄α = 0}.
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Theorem 2.3.6. (1) The Dolbeault complex Ap,•(X) decomposes into an or-
thogonal direct sum

Ap,•(X) = Hp,•(X)⊕ Im ∆∂̄ .

(2) Hp,•(X) is a complex of finite-dimensional vector spaces with zero differen-
tials, and ∂̄∗ is zero on it.

(3) Im ∆∂̄ is homotopy equivalent to zero.

Proof. It is the same elliptic operator theory applied to ∆∂̄ , and followed by a
computation which we already did for ∆ on Riemannian manifolds.

2.4 Kähler metrics

Definition 2.4.1. Let (V, I) be an R-vector space of dimension 2n with almost-
complex structure I, and hermitian metric g. Define a 2-form ω ∈ Λ2V ∗ as

ω(u, v) = g(u, Iv).

This form is called the Kähler form associated to g.

Observe that ω is indeed alternating since

ω(u, v) = g(u, Iv) = g(Iv, u) = −g(v, Iu) = −ω(v, u).

Moreover, ω is of type (1, 1) when viewed as an element of Λ2V ∗C .

Proposition 2.4.2. The form ωn

n! is a volume form.

Proof. The operator I has no real eigenvalues, so that if v ∈ V is a nonzero
vector, then the subspace spanned by v, Iv is of dimension 2. Moreover, I is
an automorphism of this subspace. Thus we can choose a basis of V of the
form {ek, Iek}nk=1. Since I is an isometry, such a basis can be chosen to be
orthonormal.

Let αk = e∗k ∧ (Iek)∗. Observe that αk ∧ αl = αl ∧ αk, αk ∧ αk = 0, and that
α1 ∧ α2 ∧ . . . ∧ αn is a volume form. Moreover ω = α1 + α2 + . . .+ αk, so

ωn = n! · α1 ∧ α2 ∧ . . . ∧ αn.

Thus we have a canonical choice of a volume form.

Definition 2.4.3. Let (X, g) be a complex manifold with hermitian metric g.
The metric g is called Kähler if the associated Kähler form ω is closed.
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Fubini-Study metrics on CPn are Kähler ([9], chapter 3, 3.3.2). As a conse-
quence, one obtains Kähler metrics on closed submanifolds of CPn restricting
the Kähler form ω, and reconstructing the metric as g(−,−) = ω(I−,−). On a
complex torus X = Cn/Λ one obtains a Kähler metric extending the standard
hermitian metric on Cn = (TX,R)0 to all of TX,R by translations. In this case ω
is closed because its coefficients are constant. Constructing Kähler metrics is a
hard problem in general. It is a deep theorem that every complex surface with
even b1 admits a Kähler metric ([1] IV.3).

Remark 2.4.4. There are topological obstructions to existence of Kähler metrics.
For example, if ωk is exact for some k 6 n, then the form ωn

n! is also exact, which
contradicts the fact that it is a volume form. Hence all even cohomology groups
H2k(X,C) must be nonzero.

Remark 2.4.5. A complex manifold with a Kähler metric can be diffeomorphic
to a complex manifold which has no Kähler metrics [4].

Theorem 2.4.6. On a complex manifold (X, g) with Kähler metric one has:

∆d = 2∆∂ = 2∆∂̄ .

This theorem is an easy consequence of the so-called Kähler identities, relating
various operators which act on A•(X). Kähler identities are deep, and their
proof goes beyond the scope of this text.

There are several proofs of Kähler identities in the literature. One can either
use the fact that Kähler metrics admit local geodesic coordinates ([9], chapter 6,
section 1), or use representation theory, together with Lefschetz decomposition
([5], chapter 3, section 1). There are at least two other coordinate-free proofs:
see [7], section 2.2, and [8], lectures 6, and 7 (in Russian). For a conceptual
interpretation of Kähler identities see [5], appendix 3.B.

2.5 Symmetries of the diamond

Let (X, g) be a complex manifold with Kähler metric. The de Rham complex
A•(X) is the total complex of the double complex

A0,2(X)
∂ //

∂̄

OO

A1,2(X)
∂ //

∂̄

OO

A2,2(X)
∂ //

∂̄

OO

A0,1(X)
∂ //

∂̄

OO

A1,1(X)
∂ //

∂̄

OO

A2,1(X)
∂ //

∂̄

OO

A0,0(X)
∂ //

∂̄

OO

A1,0(X)
∂ //

∂̄

OO

A2,0(X)
∂ //

∂̄

OO
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Its columns, the Dolbeault complexes Ap,•(X), compute the sheaf cohomology
Hq(X,Ωp

X).

The Laplacian ∆∂̄ is an endomorphism of the column complexes, ∆∂ is an
endomorphism of the row complexes, while ∆ is a priori only an endomorphism
of the total complex. Since the metric g is Kähler, all three Laplacians coincide
up to a constant, so they are endomorphisms of the double complex, in the sense
that they send Ap,q(X) to Ap,q(X), and commute with ∂, and ∂̄.

Theorem 2.5.1. Let (X, g) be a complex manifold with Kähler metric.

(1) The double complex (A•,•(X), ∂, ∂̄) decomposes into a direct sum

A•,•(X) = H•,•(X)⊕ Im ∆.

The differentials of H•,•(X) are zero, while the total complex of Im ∆ is homo-
topy equivalent to zero.

(2) The image of Hp,q(X) in Hp+q(X,C) is precisely the subspace Hp,q(X) of
classes representable by forms of type (p, q).

(3) There is a decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q(X).

(4) This decomposition is independent of the choice of Kähler metric.

Proof. (1), (1) ⇒ (2), (1) + (2) ⇒ (3) Omitted.

(4) The type of a form is determined by the almost-complex structure only.

Recall that
Hp,q(X) ∼= Hp,q(X) ∼= Hq(X,Ωp

X).

So Hodge theory connects topological cohomology Hk(X,C) with cohomology
of geometric objects Ωp

X .

Remark 2.5.2. The theorem above shows that the double complex A•,•(X) of
a Kähler manifold is a special one. Not every double complex of vector spaces
can be decomposed into a direct sum of a complex with zero differentials, and
an acyclic complex. The easiest example is

C id // C

0 //

OO

C.

id

OO

See [6] for more details.
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It is customary to arrange the spaces Hp,q = Hp,q(X) to a rhombus-shaped
figure called Hodge diamond:

Hn,n

Hn,n−1 Hn−1,n

Hn,n−2 Hn−1,n−1 Hn−2,n

· · · · ·
Hn,0 · · · · · H0,n

· · · · ·
H2,0 H1,1 H0,2

H1,0 H0,1

H0,0

Theorem 2.5.3. Symmetries of the diamond.

(1) Hodge symmetry: reflection along the vertical axis.

Complex conjugation induces an antilinear isomorphism Hp,q(X)→ Hq,p(X).

(2) Serre duality: rotation by 180 ◦.

The cup product pairing Hp,q(X)×Hn−p,n−q(X)→ Hn,n(X) is nondegenerate.

Proof. (1) Omitted.

(2) If a form α is ∂̄-harmonic then,

0 = (∆∂̄α, α) = ‖∂̄α‖2 + ‖∂̄∗α‖2,

so α is both ∂̄-closed, and ∂̄∗-closed. As a consequence,

∂̄(?α) = ∂?α = −?−1∂̄∗α = 0,

∂̄∗(?α) = −?∂?(?α) = ±∂̄α = 0.

Hence the form ?α is ∂̄-harmonic, and in particular, ∂̄-closed. Since the integral
of α ∧ ?α over X is ‖α‖2 > 0, Stokes theorem shows that α ∧ ?α can not be
exact.

Remark 2.5.4. Contrary to what its proof suggests, Hodge symmetry is a deep
fact. Deligne and Illusie obtained Hodge decomposition for algebraic varieties
over C using reduction to positive characteristic, but to author’s knowledge
there is no proof of Hodge symmetry which goes around the analytic theory of
harmonic forms. It is known that Hodge symmetry fails in positive characteris-
tic.

Remark 2.5.5. Serre duality holds for arbitrary complex manifolds. Indeed, in
our proof we only used the Laplacian ∆∂̄ .

Corollary 2.5.6. If X is a complex Kähler manifold, then the dimension of its
odd cohomology groups is even.
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Proof. If p+ q is odd then the sum

dimHp+q(X,C) =
∑

dimHp,q(X)

consists of an even number of summands. The claim follows since dimHp,q =
dimHq,p by Hodge symmetry.
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