
Flat and étale morphisms

Maxim Mornev

All rings are commutative.
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1 Flat morphisms

1.1 Preliminaries on tensor product

Let A be a ring, M and A-module. For all A-modules N1, N2 we have a natural
isomorphism

HomA(N1 ⊗AM,N2) ∼= HomA(N1,HomA(M,N2)).

In other words ⊗AM is left adjoint to HomA(M,−). Hence ⊗AM is right exact
and commutes with colimits.
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Left derived functors Li(⊗AM)(−) are denoted TorAi (−,M). A morphism of
modules M → M ′ induces natural morphisms TorAi (−,M) → TorAi (−,M ′), so
Tori is a bifunctor. The most important property of Tor is its commutativity:

Theorem 1.1.1. Let A be a ring, and let M,N be A-modules. For every i > 0
there exists a natural isomorphism TorAi (N,M)→ TorAi (M,N).1

We will not need the full force of this theorem and so omit its proof.

Proposition 1.1.2. Let A be a ring, I ⊂ A an ideal, and M an A-module.
TorA1 (A/I,M) = ker(I ⊗AM →M).

Proof. The short exact sequence 0 → I → A → A/I → 0 induces an exact
sequence 0 = TorA1 (A,M)→ TorA1 (A/I,M)→ I ⊗AM →M .

Corollary 1.1.3. Let a ∈ A be a nonzero element. TorA1 (A/(a),M) is the
a-torsion of M .

Let A,B be rings, N1 an A-module, N2 an A,B-bimodule, and N3 a B-module.
There is an isomorphism of A,B-bimodules

(N1 ⊗A N2)⊗B N3 → N1 ⊗A (N2 ⊗B N3),

which is natural in N1, N2, N3.

Also recall that if A is a ring and S ⊂ A a multiplicative system, then the
functor ⊗AAS is isomorphic to the functor of localization at S.

1.2 Flat modules

Definition 1.2.1. Let A be a ring. A module M over A is called flat if ⊗AM
is exact.

Proposition 1.2.2. Let A → B be a morphism of rings, and M a B-module.
If M is flat over B and B is flat over A then M is flat over A.

Proof. The functor −⊗AM is isomorphic to the composition (−⊗A B)⊗B M
of exact functors.

Proposition 1.2.3. Let A → B be a morphism of rings. If M is a flat A-
module, then B ⊗AM is a flat B-module.

Proof. The functor −⊗B (B⊗AM) is isomorphic to the functor −⊗AM , which
is exact.

1See [3], chapter 2, section 2.7
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Proposition 1.2.4. Let ϕ : A→ B be a morphism of rings, and M a B-module.
M is flat over A if and only if for every q ∈ SpecmaxB the module Mq is flat
over Ap, where p = ϕ−1q.

Proof. Notice that ⊗AM sends A-modules to B-modules, with the structure
of B-module inherited from M . Let q ∈ SpecmaxB, and p = ϕ−1q. We have
an isomorphism of functors from the category of A-modules to the category of
Bq-modules:

(−⊗AM)q = (−⊗AM)⊗B Bq = −⊗A (M ⊗B Bq) =

−⊗AMq = −⊗A (Ap ⊗Ap
Mq) = (−)p ⊗Ap

Mq.

Localization is exact. Hence, if ⊗AM is flat then ⊗Ap
Mq is exact. Conversely,

if ⊗Ap
Mq is exact for every q ∈ SpecmaxB, p = ϕ−1q, then tensoring a short

exact sequence N1 → N2 → N3 with M we obtain a sequence of B-modules
which is exact at every maximal ideal q. Therefore it is exact.

Proposition 1.2.5. Let A be a ring. An A-module is flat if and only if
I ⊗A M → M is injective (equivalently, TorA1 (A/I,M) = 0) for every finitely
generated ideal I ⊂ A.

Proof. The “only if” part is trivial. We want to show that for arbitrary inclusion
of A-modules N ′ ⊂ N the induced morphism N ′⊗AM → N ⊗AM is injective.

We first show that I ⊗AM →M is injective for every ideal I. Let x ∈ I ⊗AM
be an element which vanishes in M . The element x is a finite linear combination
of elementary tensors y ⊗m where y ∈ I,m ∈ M . Thus there exists a finitely
generated ideal I ′ ⊂ I and x′ ∈ I ′ ⊗AM such that the image of x′ in I ⊗AM
is equal to x. The map I ′ ⊗AM → M is injective, so x′ = 0 and hence x = 0,
i.e. I ⊗AM → M is injective. As a corollary, TorA1 (N,M) = 0 if N is a cyclic
module, that is, N = A/I for some ideal I ⊂ A.

Let N be an arbitrary module and N ′ its submodule. Consider an index set J
whose elements are finite subsets of N\N ′. For j ∈ J let Nj be the submodule of
N generated by N ′ and j. Jf j ⊂ j′ then there is a natural injection Nj → Nj′ .
The inclusion order on J makes it a directed poset. Clearly, colimj∈J Nj = N .

Let j ⊂ j′ be an inclusion. Assume that j′\j consists of a single element. In
this case Nj′/Nj is a cyclic module. The short exact sequence 0 → Nj →
Nj′ → Nj′/Nj → 0 induces an exact sequence TorA1 (Nj′/Nj ,M) → Nj ⊗A
M → Nj′ ⊗A M . Since Nj′/Nj is cyclic, TorA1 (Nj′/Nj ,M) vanishes, and so
Nj ⊗AM → Nj′ ⊗AM is injective.

A general inclusion j ⊂ j′ can be factored into a sequence of inclusions such
that at each step only one new element appears. Hence Nj ⊗AM → Nj′ ⊗AM
is injective, which implies that the morphism N ′⊗AM → colimj∈J Nj ⊗AM is
injective too. It remains to recall that ⊗AM commutes with colimits.

3



Corollary 1.2.6. Let A be a PID. An A-module M is flat if and only if it is
torsion-free.

Proposition 1.2.7. Let A be a ring, let 0 → M ′ → M ′′ → M → 0 be a
short exact sequence of A-modules, and let N be an A-module. If M is flat then
M ′ ⊗A N →M ′′ ⊗A N is injective.

Proof. One can either refer to commutativity of Tor or do a direct proof as
follows. Let 0 → K → F → N → 0 be a short exact sequences with F a free
module. Consider a commutative diagram with exact rows and columns:

0y
M ′ ⊗A K −−−−→ M ′′ ⊗A K −−−−→ M ⊗A K −−−−→ 0y y y

0 −−−−→ M ′ ⊗A F −−−−→ M ′′ ⊗A F −−−−→ M ⊗A F −−−−→ 0y y y
M ′ ⊗A N −−−−→ M ′′ ⊗A N −−−−→ M ⊗A N −−−−→ 0.y y y

0 0 0.

A simple diagram chase finishes the proof.

Theorem 1.2.8. Let A be a local noetherian ring, and M an A-module of finite
type. If M is flat then it is free.

Proof. Let k be the residue field of A. Take a k-basis of M ⊗A k. Lifting it
to M we obtain a morphism from a free A-module F of finite type to M . By
Nakayama lemma this morphism is surjective. Let K be its kernel. Tensoring
the short exact sequence 0→ K → F →M → 0 by k we obtain exact sequence
K⊗A k → F ⊗A k →M⊗A k → 0. The morphism K⊗A k → F ⊗A k is injective
by proposition 1.2.7. The morphism F ⊗A k → M ⊗A k is an isomorphism by
construction. Hence K⊗A k is zero. On the other hand, K is of finite type since
A is noetherian. So, Nakayama lemma shows that K = 0.

1.3 Artin-Rees lemma and Krull intersection theorem

Let A be a ring, I ⊂ A an ideal.

Definition 1.3.1. Let M be an A-module. An I-filtration on M is a descending
chain of submodules FiM ⊂ M , i ∈ Z>0, such that F0M = M and IFiM ⊂
Fi+1M for every i.
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Definition 1.3.2. Let M be an A-module. An I-filtration FiM is called stable
if IFiM = Fi+1M for sufficiently large i.

Proposition 1.3.3. Let A be a ring, I ⊂ A an ideal, and let N,M be A-
modules. If FiN is a stable I-filtration of N then the filtration of N ⊗A M by
images of FiN ⊗AM is stable.

Proof. Omitted.

Proposition 1.3.4. Let A→ B be a morphism of rings, I ⊂ A an ideal, M a
B-module, and FiM a stable I-filtration of M as an A-module. If each FiM is
a B-submodule, then FiM is a stable IB-filtration of M as a B-module.

Proof. Omitted.

Let M be an A-module endowed with an I-filtration FiM . Consider a graded
ring BIA =

⊕∞
i=0 I

i and a BIA-module BFM =
⊕∞

i=0 FiM .

Proposition 1.3.5. Let A be a noetherian ring, I ⊂ A an ideal, M an A-
module with an I-filtration FiM . The filtration is stable if and only if BFM is
of finite type over BIA.

Lemma 1.3.6 (Artin-Rees lemma). Let A be a noetherian ring, I ⊂ A an ideal,
M an A-module with a stable I-filtration FiM , and N ⊂ M a submodule. The
filtration FiN = N ∩ FiM is stable.

Proof. The ring BIA is noetherian since it is a quotient of the polynomial ring
A[x1, . . . , xn] for some n. The module BFN is a submodule of BFM , and thus
is of finite type. Now the claim follows from the previous proposition.

Theorem 1.3.7 (Krull intersection theorem). Let A be a noetherian local ring,
I ⊂ A an ideal and M a module of finite type. If FiM is a stable I-filtration of
M , then

⋂∞
i=0 FiM = 0.

Proof. Consider the submodule N =
⋂∞
i=0 FiM . By construction N ∩FiM = N

for every i, and so by Artin-Rees lemma N = IN . Hence N = mN . Since N is
of finite type, Nakayama lemma implies that N = 0.

1.4 Modules of finite length

Let A be a ring, M a module. A strict chain of submodules of length n is an
increasing sequence of submodules of M :

M0 ⊂M1 ⊂ . . . ⊂Mn,

such that M0 = 0,Mn = M , and each inclusion Mi ⊂Mi+1 is nontrivial.

We define lA(M), the length of M , as the supremum of lengths of strict chains.
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Definition 1.4.1. M is called a module of finite length if lA(M) is finite (i.e.
if the supremum exists).

Proposition 1.4.2. lA(M) = 1 if and only if M = A/m for some m ∈
SpecmaxA.

Proof. Excercise.

Proposition 1.4.3. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence
of A-modules. If M is of finite length or M ′ and M ′′ are of finite length then
all three modules are of finite length and lA(M) = lA(M ′) + lA(M ′′).

Proof. Excercise.

Proposition 1.4.4. Let A be a ring, m ⊂ A a maximal ideal of finite type, and
M an A-module of finite type. If mnM = 0 for some n > 0, then M is of finite
length.

Proof. Let n > 0 be an integer. Suppose that A/mn is of finite length. If a
module M of finite type is annihilated by mn then it is an A/mn-module, and
so is a quotient of a finite direct sum of A/mn’s. Hence M is of finite length.

We next prove that A/mn is of finite length using induction over n. The case
n = 1 was already established. Consider a short exact sequence

0→ m/mn → A/mn → A/m→ 0.

The module m/mn is of finite type since m is, and is annihilated by mn−1,
whence of finite length. But then A/mn is also of finite length.

Proposition 1.4.5. Let A be a ring, M an A-module. If TorA1 (A/m,M) = 0
for every m ∈ SpecmaxA, then TorA1 (N,M) = 0 for every module N of finite
length.

Proof. We will do it by induction on lA(N). If lA(N) = 1 then N is of the form
A/m, and so TorA1 (N,M) = 0 by assumption. Otherwise there exists a proper
nontrivial submodule N ′ ⊂ N . Consider an exact sequence TorA1 (N ′,M) →
TorA1 (N,M) → TorA1 (N/N ′,M) induced by short exact sequence 0 → N ′ →
N → N/N ′ → 0. Since lA(N ′) < lA(N) and lA(N/N ′) < lA(N), we see that
TorA1 (N ′,M) = TorA1 (N/N ′,M) = 0, so TorA1 (N,M) = 0.

1.5 Criteria of flatness

Theorem 1.5.1 (Critère local de platitude). Let A → B be a local morphism
of noetherian local rings, k the residue field of A, and M a B-module of finite
type. If TorA1 (k,M) = 0 then M is flat over A.
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Proof. We want to show that for every ideal I ⊂ A the module TorA1 (A/I,M)
vanishes. Notice that if A/I is of finite length, then TorA1 (A/I,M) = 0 by
proposition 1.4.5.

Let m ⊂ A be the maximal ideal, and I ⊂ A an arbitrary ideal. Let n > 0 be
an integer. Consider a diagram

0 −−−−→ I ∩mn −−−−→ I −−−−→ I/(I ∩mn) −−−−→ 0y y y
0 −−−−→ mn −−−−→ A −−−−→ A/mn −−−−→ 0.

Tensoring it with M over A we obtain a diagram

(I ∩mn)⊗AM −−−−→ I ⊗AM −−−−→ (I/(I ∩mn))⊗AMy yα yβn

mn ⊗AM −−−−→ M −−−−→ (A/mn)⊗AM.

with right exact rows. The cokernel of the map I/(I ∩mn)→ A/mn is A/(I +
mn). It has finite length by proposition 1.4.4. Thus TorA1 (A/(I + mn),M) = 0
and the morphism βn is injective. As a consequence, ker(α) is contained in the
image of (I ∩mn)⊗AM .

The filtration mn on A is m-stable. Hence by Artin-Rees lemma the filtration
I∩mn on I is m-stable, and so the filtration on I⊗AM by images of (I∩mn)⊗AM
is m-stable (notice that I ⊗AM is not necessarily an A-module of finte type!).

The module I ⊗A M has a structure of B-module via M , and the images of
(I ∩ mn) ⊗A M in this module are B-submodules. Let J = mB ⊂ B. This
ideal is proper since A→ B is a local morphism. The filtration on I ⊗AM as a
B-module is J-stable. Now, Krull intersection theorem tells us that ker(α) = 0
as a submodule of zero module.

Lemma 1.5.2. Let A→ B be a local morphism of local noetherian rings, I ⊂ A
an ideal, and M a B-module of finite type. If TorA1 (A/I,M) = 0 and M/IM is
a flat A/I-module, then M is a flat A-module.

Proof. Let k be the residue field of A. A short exact sequence

0→ K → A/I → k → 0.

yields an exact sequence

TorA1 (A/I,M)→ TorA1 (k,M)→ K ⊗AM → A/I ⊗AM

By assumptions TorA1 (A/I,M) = 0. The modules K and A/I are A/I-modules,
and the functor ⊗AM restricted to such modules is isomorphic to ⊗A/IM/IM .
The latter functor is exact, and so the arrow K⊗AM → A/I⊗AM is injective.
Hence TorA1 (k,M) = 0, and the local criterion of flatness finishes the proof.
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Proposition 1.5.3. Let A be a ring, M a flat A-module. If M/mM 6= 0 for
every m ∈ SpecmaxA, then N ⊗AM = 0 implies N = 0.

Proof. If m ∈ SpecmaxA, then

(N ⊗AM)⊗A k(m) = N/mN ⊗k(m) M/mM.

Since N ⊗AM = 0, we see that N/mN = 0 for every m ∈ SpecmaxA. If N is of
finite type, then by Nakayama Nm = 0 for every m ∈ SpecmaxA, so N = 0. If
N is not of finite type, then we take an element x ∈ N and consider a submodule
N ′ generated by x. The morphism N ′ → N is injective, so N ′⊗AM → N⊗AM
is injective, and as a consequence N ′ = 0, i.e. x = 0. Hence, N = 0.

Theorem 1.5.4 (Critère de platitude par fibres, cas noethérien). Let A →
B → C be local morphisms of local noetherian rings, and M a C-module of
finite type. Let k be the residue field of A. If M is nonzero, flat over A, and
M ⊗A k is flat over B ⊗A k, then B is flat over A and M is flat over B.

Proof. Let m be the maximal ideal of A, and I = mB. The natural map
m⊗AB → I is surjective, and (m⊗AB)⊗B C = m⊗A C, so m⊗A C → I ⊗B C
is surjective. As a consequence, m⊗AM → I ⊗B M is surjective.

The composition m⊗AM → I ⊗B M →M is injective, since M is flat over A.
Hence m ⊗A M → I ⊗B M is an isomorphism, and I ⊗B M → M is injective.
In particular, TorA1 (B/I,M) = 0, so M is flat over B by lemma 1.5.2.

Consider an exact sequence 0 → m → A → k → 0. Tensoring with B over A
gives us an exact sequence 0→ TorA1 (k,B)→ m⊗A B → I → 0. Tensoring the
latter sequence with M over B yields a sequence 0→ TorA1 (k,B)⊗BM → m⊗A
M → I ⊗BM → 0. The last map is an isomorphism, so TorA1 (k,B)⊗BM = 0.

If mB ⊂ B and mC ⊂ C are maximal ideals, then M/mCM is nonzero by
Nakayama, so M/mBM is nonzero. Hence, proposition 1.5.3 applies and shows
that TorA1 (k,B) = 0. It remains to apply theorem 1.5.1.

1.6 Flatness in the context of schemes

Definition 1.6.1. Let f : X → Y be a morphism of schemes, and F a sheaf of
OX -modules. We say that F is flat over Y at x ∈ X if the stalk Fx is a flat
module over OY,f(x). We say that f is flat at x ∈ X if OX is flat over Y at x.
We say that F is flat over Y if it is flat over Y at all points. We say that f is
flat if OX is flat over Y .

Proposition 1.6.2. Flat morphisms have following properties:

(1) If X and Y are affine schemes and F is quasi-coherent, then F is flat over
Y if and only if Γ(X,F) is a flat module over Γ(Y,OY ).
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(2) Let f : X → Y , g : Y → Z be morphisms, and F a quasi-coherent sheaf. If
F is flat over Y and g is flat, then F is flat over Z. In particular, a composition
of flat morphisms is flat.

(3) Let X → Y be a morphism, F a quasi-coherent sheaf, g : Z → Y a mor-
phism, and p : X ×Y Z → X a projection. If F is flat over Y , then p∗F is flat
over Z. In particular, a basechange of a flat morphism is flat.

(4) An open immersion is flat.

Proof. Follows easily from what we have already done.

Theorem 1.6.3. Let S,X, Y be locally noetherian schemes, and f : X → Y a
morphism of schemes over S. Let F a coherent OX-module. Assume that all
stalks of F are nonzero, F is flat over S, and for every s ∈ S the pullback of F
to Xs is flat over Ys. Then F is flat over Y and Y is flat over S at all points
y ∈ f(X).

Proof. Follows at once from theorem 1.5.4.

Corollary 1.6.4. Let S,X, Y be locally noetherian schemes. Let f : X → Y
and g : Y → S be morphisms of schemes. If gf is flat and for every s ∈ S the
pullback Xs → Ys of f is flat, then f is flat, and g is flat at all points y ∈ f(X).

2 Étale morphisms

2.1 The module of Kähler differentials

Definition 2.1.1. Let A → B be a morphism of rings, and M a B-module.
An A-derivation d : B →M is an A-module morphism, which satsifies Leibnitz
identity: d(b1b2) = b2d(b1) + b1d(b2) for every b1, b2 ∈ B.

A sum of two derivations is again an A-derivation, as well as a scalar multiple
of a derivation by an element of B. Hence, A-derivations B → M form a B-
module, which is denoted DerA(B,M). The association M 7→ DerA(B,M) is a
covariant functor in an evident way.

Proposition 2.1.2. Let A → B → C be morphisms of rings. There is an
induced exact sequence of functors

0→ DerB(C,−)→ DerA(C,−)→ DerA(B,B−)

The first map takes a B-derivation and interprets it as an A-derivation. The
second map precomposes a derivation with the morphism B → C. The symbol
B− denotes restriction of scalars from C to B.
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Proof. The first map is obviously injective. If an A-derivation d : C → M
vanishes when restricted to B, then it is a B-derivation, so the sequence is
exact at DerA(C,−).

Proposition 2.1.3. Let A→ B be a morphism of rings, I ⊂ B an ideal. There
is an exact sequence of functors:

0→ DerA(B/I,−)→ DerA(B,B/I−)→ HomB/I(I/I
2,−)

The first map precomposes a derivation with B → B/I. The second map re-
stricts a derivation to I.

Proof. Let M be a B/I-module. Leibnitz identity and the fact that IM = 0
show that every A-derivation d : B → M vanishes on I2, and determines a
morphism d : I/I2 → M of B/I-modules. On the other hand, if d|I = 0, then
clearly d comes from an A-derivation B/I →M , hence the sequence is exact.

Proposition 2.1.4. Let A → B be a morphism of rings, s ∈ B a unit, b ∈ B
an element, and d : B →M an A-derivation.

d
( b
s

)
=
sdb− bds

s2

Proof. From the formula 0 = d(1) = d(ss−1) = sd(s−1) + s−1ds we conclude
that d

(
1
s

)
= −dss2 , and then the claim follows by Leibnitz identity.

Proposition 2.1.5. Let A be a ring, S ⊂ A a multiplicative system, and A→
AS a localization morphism. The functor DerA(AS ,−) is zero.

Proof. From the previous proposition it follows that every A-derivation of AS
is zero.

Proposition 2.1.6. Let A → B be a morphism of rings, and S ⊂ B a mul-
tiplicative system. The morphism DerA(B,B−) → DerA(BS ,−) induced by
B → BS is an isomoprhism.

Proof. Let M be a BS-module. We first show that the morphism in question is
surjective. Let d : B →M be an A-derivation. It induces a derivation D : BS →
M by the rule

D
( b
s

)
=
sdb− bds

s2
.

Additivity and Leibnitz identity follow from trivial but lengthy calculations.
Clearly, D

(
b
1

)
= db

1 , so D is an A-derivation which restricts to d on B.

As for injectivity, consider the exact sequence of proposition 2.1.2 induced by
A→ B → BS , and observe that DerB(BS ,−) = 0.
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Proposition 2.1.7. Let A be a ring, let B,C be A-algebras. The morphism
DerC(B ⊗A C,−) → DerA(B,B−) induced by ring morphism B → B ⊗A C is
an isomorphism.

Proof. Let M be a module over B ⊗A C. An element of DerC(B ⊗A C,M) is
a bilinear map d : B × C → M which satisfies the following identities for every
a ∈ A, b ∈ B, c ∈ C, bi ∈ B:

d(ab, c) = d(b, ac) = ad(b, c),

d(b, c) = (1⊗A c)d(b, 1),

d(b1b2, 1) = (b1 ⊗A 1)d(b2, 1) + (b2 ⊗A 1)d(b1, 1).

From this description it is clear that if d vanishes in DerA(B,M), then d = 0.
Given D ∈ DerA(B,M) we define d(b, c) = (1⊗A c)D(b), which clearly satisfies
the equation above, so the claim follows.

Proposition 2.1.8. Let f : A→ B be a morphism of rings, S ⊂ B a multiplica-
tive system. The natural morphism DerAf−1S

(BS ,−)→ DerA(B,−) induced by
ring morphisms B → BS and A→ Af−1S is an isomorphism.

Proof. The morphism in question factors as

DerAf−1S
(BS ,−)→ DerA(BS ,−)→ DerA(B,−).

Since BS ⊗AAf−1S = BS , the first morphism is an isomorphism by proposition
2.1.7. The second morphism is an isomorphism by proposition 2.1.6.

Theorem 2.1.9. Let A→ B be a morphism of rings. The functor DerA(B,−)
is representable.

Proof. Such proofs are better done on one’s own.

Let f : X → Y be a morphism of schemes. One can extend the definition of
Ω1 to X → Y in two ways. First, since Ω1

B/A commutes with restrictions to
principal open subsets of SpecB and pullbacks to principal open subsets of
SpecA, one can pick a covering Ui of Y by open affines and coverings Vij of
f−1Ui by open affines, then glue various Ω1

Vij/Ui
, and show that this construction

does not depend on the choice of covers. The other way is, given a morphism
f : (X,OX) → (Y,OY ) of ringed spaces and a OX -module F , define a OX -
module of derivations Derf−1OY

(OX ,F). One then shows that whenever X,Y
are schemes and the morphism f is local, Derf−1OY

(OX ,−) is represented by
a quasi-coherent OX -module, which agrees with Ω1 when X and Y are affine.
Either way, one obtains the following theorem:

Theorem 2.1.10. To every morphism of schemes f : X → Y one can associate
a quasi-coherent OX-module Ω1

X/Y which has following properties:
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• If X,Y are affine, then Ω1
X/Y coincides with the module of Kähler differ-

entials associated to the ring morphism Γ(Y,OY )→ Γ(X,OX).

• Ω1
X/Y commutes with restrictions to opens U ⊂ X.

• Let X
f−→ S and Y

g−→ S be morphism. The sheaf Ω1
X×SY/Y

is isomorphic

to p∗Ω1
X/S, where p : X ×S Y → X is a projection.

• If X
f−→ Y

g−→ Z are morphisms, then there is an exact sequence

f∗Ω1
Y/Z → Ω1

X/Z → Ω1
X/Y → 0.

• If X
f−→ Y is a morphism and Z

g−→ X is a closed immersion with ideal
sheaf I, then there exists an exact sequence

I/I2 → g∗Ω1
X/Y → Ω1

Z/Y → 0.

• If f : X → Y is locally of finite type, then Ω1
X/Y is locally of finite type

(in particular, coherent if X is locally noetherian).

2.2 Étale algebras over fields

Proposition 2.2.1. Let k → K be a finite extension of fields. Ω1
K/k vanishes

if and only if k → K is separable.

Proof. Assume that k → K is finite and separable. Let x ∈ K be a primitive
element, f its minimal polynomial. Let M be a K-module, and d : K → M a
derivation.

0 = d(f(x)) = f ′(x)dx.

Since K is separable, f ′(x) 6= 0, so dx = 0 in M . Since K is generated over k
by powers of x, we conclude that d = 0.

Assume that k → K is inseparable and primitive. Let x ∈ K be a prim-
itive element and f its minimal polynomial. Write K = k[T ]/(f). Recall
that every derivation d ∈ Derk(k[T ],K) is determined by d(T ) and d(T ) can
be arbitrary. Set d(T ) = x. Then d vanishes when restricted to (f), since
d(gf) = g(x)f ′(x)dx + f(x)dg = 0 as f(x) = 0 and f ′(x) = 0. Hence d comes
from some derivation in Derk(k[T ]/(f),K) i.e. Derk(K,K). As a consequence,
Derk(K,K) 6= 0.

Assume that k → K is inseparable. There is a nontrivial proper subfield E ⊂ K
such that E → K is inseparable and primitive. Then Ω1

K/k is nonzero, since its

quotient Ω1
K/E is nonzero.
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Proposition 2.2.2. Let k be an algebraically closed field, A a k-algebra of finite
type, and m ∈ SpecmaxA. The homomorphism m/m2 → Ω1

A/k ⊗A k(m) is an
isomorphism.

Proof. We need to prove that the natural restriction map

Derk(A,M)→ HomA/m(m/m2,M)

is an isomorphism for every A/m-module M .

By Hilbert’s Nullstellensatz the composition k → A→ A/m is an isomorphism.
In particular, Derk(A/m,−) = 0, so that the natural map in question is injective.
Let f : m/m2 →M be a morphism of A/m-modules. We define a map d : A→M
by sending an element a ∈ A to f(a−a(m)), where a(m) is the image of a modulo
m interpreted as an element of A. If a1, a2 ∈ A, then

a1a2 − a1(m)a2(m) =

(a1 − a1(m))(a2 − a2(m)) + a2(m)(a1 − a1(m)) + a1(m)(a2 − a2(m)).

Also, ai = ai(m) in A/m, so that d(a1a2) = a2d(a1) + a1d(a2). Clearly, d
vanishes on elements of k, so it is a derivation.

Definition 2.2.3. Let k be a field. A k-algebra A is called étale if it is a finite
cartesian product of finite separable extensions of k.

Theorem 2.2.4. Let k be a field. A k-algebra of finite type A is étale if and
only if Ω1

A/k = 0.

Proof. Let A be a k-algebra of finite type such that Ω1
A/k = 0. Let us first

assume that k is algebraically closed. By virtue of proposition 2.2.2 we then
know that m/m2 = 0 for every maximal ideal m of A. Localizing at m and
applying Nakayama lemma we conclude that Am is a field, the kernel of the
localization morphism A → Am is m, and Am = A/m. By Nullstellensatz,
A/m ∼= k.

Let p ∈ SpecA be a prime, and let m be a maximal ideal containing it. Let
a ∈ m. Since a vanishes in Am, there exists s 6∈ m such that sa = 0 in A. In
particular, sa ∈ p, so a ∈ p. Hence each prime of A is maximal.

The algebra A is noetherian, so that the set of its minimal primes is finite. But
all primes are maximal, so SpecmaxA is finite. Now, consider a morphism

A→
∏

m∈SpecmaxA

A/m (1)

By Chinese remainder theorem it is surjective. But A/m = Am, so that the
kernel of this morphism consists of elements which vanish in all localizations
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of A at maximal ideals, i.e. the kernel is zero. Hence, this morphism is an
isomorphism. In particular, dimk A is finite.

Now, let k be arbitrary, and k its algebraic closure. Let Ak = A ⊗k k. Since
dimk Ak is finite, dimk A is finite too. Let p ∈ SpecA be a prime. The k-
algebra A/p is finite-dimensional and has no zero divisors, hence it is a field. So
SpecA = SpecmaxA, and SpecmaxA is finite.

We consider a morphism as in (1). Its kernel is the nilradical of A. If a ∈ A
is nilpotent, then its image in Ak is nilpotent too, hence zero. But A → Ak is
injective, so that the kernel of (1) is zero. Now, proposition 2.2.1 finishes the
proof.

2.3 Unramified morphisms

Definition 2.3.1. Let f : X → Y be a morphism of schemes. We say that f is
unramified if f is locally of finite type and Ω1

X/Y = 0.

Proposition 2.3.2. Unramified morphisms have following properties:

(1) If f : X → Y and g : Y → Z are unramified, then gf is unramified.

(2) If f : X → Y and g : Y → Z are such that gf is unramified, then f is
unramified.

(3) If f : X → S is unramified, and g : Y → S is a morphism, then the pullback
X ×S Y → Y of f is unramified.

(4) Open immersions are unramified.

Proof. (1) The composition gf is locally of finite type. The exact sequence

g∗Ω1
Y/Z → Ω1

X/Z → Ω1
X/Y → 0

implies that Ω1
X/Z = 0.

(2) The exact sequence above shows that Ω1
X/Y = 0. The fact that f is locally

of finite type is left as an excercise (see [2] tag 01T8).

(3) Follows from proposition 2.1.7.

(4) Follows from proposition 2.1.5.

Proposition 2.3.3. Let f : X → Y be a morphism locally of finite type. It is
unramified if and only if for each y ∈ Y the fiber Xy → y is unramified.
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Proof. If Ω1
X/Y = 0, then clearly each fiber is unramified. Conversely, if Xy → y

is unramified, then the fiber of Ω1
X/Y at each point x ∈ X is zero, as an inclusion

of a point x ∈ X factors through Xf(y) → X. Since Ω1
X/Y is locally of finite

type, Nakayama lemma shows that Ω1
X/Y = 0.

Proposition 2.3.4. Let X → Spec k be a scheme over a field. It is unramified
if and only if X is discrete as a topological space, and for every x ∈ X the field
extension k → k(x) is finite separable.

Proof. Assume that X → Spec k is unramified. Let x ∈ X and U ⊂ X be an
affine open neighbourhood of x which is of finite type over Spec k. By theorem
2.2.4 we conclude that U is a spectrum of an étale algebra over k. In particular,
U is discrete. Hence X is discrete.

Assuming the converse, take x ∈ X and U ⊂ X an affine open neighbourhood
of x. Since X is discrete, U is discrete too, and as U is quasi-compact, we
conclude that U is finite as a topological space. Hence U is a spectrum of an
étale algebra over k, and so Ω1

X/k|U = 0. As a consequence, Ω1
X/k = 0. Since U

is a spectrum of an algebra of finite type over k, we conclude that X → Spec k
is locally of finite type.

Proposition 2.3.5. Let X,Y be schemes and f : X → Y a morphism locally
of finite type. The fiber of Ω1

X/Y at x is zero if and only if the residue field

extension k(f(x))→ k(x) is finite separable, and mY,f(y)OX,x = mX,x.

Proof. We immediately reduce to the case when X = SpecB and Y = SpecA
are affine, and f is of finite type. Let q ∈ SpecB and p = f(q).

Assume that Ω1
B/A⊗B k(q) = 0. Since Ω1

B/A is of finite type, Nakayama lemma

implies that (Ω1
B/A)q = 0. Hence replacing B by its localization at some element

not contained in q we may assume that Ω1
B/A = 0. As a consequence, Ω1

Bp/Ap
=

0.

Consider a ring B⊗A k(p). Since Ω1
B⊗Ak(p)/k(p)

= 0 and B is of finite type over

A, theorem 2.2.4 shows that B ⊗A k(p) is a finite étale algebra over k(p).

The morphism Ap → k(p) is surjective, so Bq → Bq ⊗Ap
k(p) is surjective. On

the other hand

B ⊗A k(p) = B ⊗A (Ap ⊗Ap
k(p)) = Bp ⊗Ap

k(p),

so Bq⊗Ap
k(p) is a localization of a finite étale algebra over k(p), hence is itself

such an algebra.

The morphism Spec(Bq ⊗Ap
k(p))→ SpecBq is a closed immersion. In partic-

ular, it is injective and sends closed points to closed points. As Bq has only one
maximal ideal, we conclude that Bq ⊗Ap

k(p) also has unique maximal ideal,
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which forces it to be a finite separable field extension of k(p). On the other
hand Bq ⊗Ap

k(p) = Bq/pBq, so that pBq = qBq.

Now, assume that pBq = qBq is maximal, and that k(q) is a finite separable
extension of k(p). Our assumptions imply that Bq/pBq = Bq ⊗Ap

k(p) = k(q).
Hence Ω1

B/A ⊗B k(q) = Ω1
Bq/Ap

⊗Bq
k(q) = Ω1

k(q)/k(p) = 0.

2.4 Étale morphisms

Definition 2.4.1. Let f : X → Y be a morphism of schemes. We say that f is
étale if it is unramified and flat.

Proposition 2.4.2. Étale morphisms have following properties:

(1) If f : X → Y and g : Y → Z are étale, then gf is étale.

(2) If f : X → S is étale, and g : Y → S is a morphism, then the pullback
X ×S Y → Y of f is étale.

(3) Open immersions are étale.

(4) If a morphism f : X → Y of schemes is locally of finite type, flat, and every
fiber Xy → y is unramified, then f is étale.

Proof. Everything follows at once from corresponding properties of flat and
unramified morphisms.

Proposition 2.4.3. Let f : X → Y and g : Y → S be morphisms of schemes.
If gf is étale and g is unramified, then f is étale. If in addition f is surjective,
then g is étale.

Proof. Follows from corollary 1.6.4 because each fiber Ys is a disjoint union of
spectra of fields.
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