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Throughout this text we will use notation, conventions and terminology of the
Stacks project [2], with one exception. We allow arbitrary locally small cate-
gories besides the ones listed at [2] tag 0015.

As a general introduction to derived categories we recommend the books [1],
and [4]. The notes of Alexander Kuznetsov [3] will be very useful for those who
can read Russian.

1 Localization of categories

1.1 Localization

Definition 1.1.1. Let C be a category, and S a collection of morphisms. A
localization of C at S is a pair (CS , Q), where CS is a category, and Q : C → CS
a functor, with the following properties.

(1) Q sends all morphisms from S to isomorphisms.

(2) If D is a category, and F : C → D a functor such that F (s) is an isomorphism
for every s from S, then there exists a pair (FS , η), where FS : CS → D is a
functor, and η : F → FSQ is an isomorphism.

(3) Given two pairs (FS , η), (F ′S , η
′) as above there exists a unique natural

transformation ξ : FS → F ′S such that ξQη = η′.

Unicity in (3) forces ξ to be an isomorphism.

Proposition 1.1.2. Let C be a category, S a collection of morphisms. If (CS , Q)
and (C′S , Q′) are localizations of C at S, then CS and C′S are equivalent.

Proof. Since Q′ transforms morphisms from S to isomorphisms, there exists
a functor F : CS → C′S and a natural isomorphism η′ : Q′ → FQ. Similarly,
there exists a functor G : C′S → CS and a natural isomorphism η : Q → GQ′.
Thus we have an isomorphism G(η′)η : Q → GFQ, and an an isomorphism
1Q : Q → 1CSQ. By property (3) of localizations there exists a unique natural
isomorphism µ : 1CS → GF such that µQ = G(η′)η. Similarly, there exists a
unique natural isomorphism ν : 1C′S → FG such that νQ′ = F (η)η′.

Proposition 1.1.3. Let C be a category, S a collection of morphisms, (CS , Q)
a localization of C at S. Let C′S be another category. If a functor F : CS → C′S
defines an equivalence of CS and C′S, then (C′S , FQ) is a localization of C at S.
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Proof. Property (1) of localization is clear.

Let G : C′S → CS be a functor, and µ : 1CS → GF , ν : FG → 1C′S natural iso-
morphisms. We can assume that µ and ν make F left adjoint to G. Indeed, we
have natural isomorphisms

HomC′S (F−,−)
(ν)∗←−−− HomC′S (F−, FG−)

F←− HomCS (−, G−).

Let D be a category, and H : C → D a functor such that H(s) is an isomor-
phism for every s from S. There exists a functor HS : CS → D and a natural
isomorphism η : H → HSQ. Consider a functor HSG : C′S → D. Composing the
natural isomorphism η with the isomorphism HS(µQ) we obtain an isomorphism
of H and (HSG)(FQ). Hence the property (2) also holds.

Let Hi : C′S → D, i = 1, 2 be functors, and ηi : H → HiFQ natural isomor-
phisms. There exists a unique morphism ξ : H1F → H2F such that ξQη1 = η2.
First, let us show that if there is a natural transformation θ : H1 → H2, such
that θFQη1 = η2, then it is unique. Indeed, θF = ξ by unicity of ξ. The square

H1
θ−−−−→ H2xH1(ν)

xH2(ν)

H1FG
θFG−−−−→ H2FG

commutes by naturality of θ. Hence θ is determined by ξG, and so is unique.

Next, we define θ by a diagram

H1
θ−−−−→ H2xH1(ν)

xH2(ν)

H1FG
ξG−−−−→ H2FG.

Consider a diagram

H1FQ
θFQ−−−−→ H2FQxH1(ν)FQ

xH2(ν)FQ

H1FGFQ
ξGFQ−−−−→ H2FGFQxH1F (µQ)

xH2F (µQ)

H1FQ
ξQ−−−−→ H2FQ.

Since F is left adjoint to G, the vertical composite arrows in this diagram are
identities.

Proposition 1.1.4. Let C be a category, S a collection of morphisms. If S
consists of isomorphisms then (C, IdC) is a localization of C at S.

Proof. Omitted.
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1.2 Derived category as a localization

Let A be an abelian category. Consider its homotopy category K(A). Recall
that a morphism of complexes s : A1 → A2 is called a quasi-isomorphism if the
induced maps on cohomology Hn(s) are isomorphisms.

Definition 1.2.1. The derived category D(A) is the localization of K(A) at
the collection of all quasi-isomorphisms.

Since the cohomology functors Hn : K(A) → A send quasi-isomorphisms to
isomorphisms by construction, we obtain induced functors Hn : D(A) → A.
Unlike cohomology, the terms of a complex A ∈ Comp(A) can not be extracted
from it in D(A) or even K(A).

The category K(A) has as full subcategories the categories K+(A), K−(A),
Kb(A) of complexes bounded below, above, or on both sides respectively. We
define D+(A), D−(A), Db(A) as localizations of respective categories at quasi-
isomorphisms. One can check that D+(A), D−(A) are full subcategories of
D(A), and that Db(A) is a full subcategory of D+(A), D−(A) provided all
relevant categories exist (see [2] tag 05RV). The categories D+(A), D−(A) are
easier to handle than the unbounded category D(A).

It is not clear a priori that D(A) exists. If A is (equivalent to) a small category
then we will see below that D(A) exists. Furthermore, D(A) exists if A is a
Grothendieck abelian category, for example the category of modules over a ring,
(pre)sheaves on a site, OX -modules on a ringed site, or quasi-coherent sheaves
on a scheme1 (see [2] tag 03EW). In the following we will show that D(A)
exists when A is (equivalent to) a small category, D+(A) exists if A has enough
injectives, and D−(A) exists if A has enough projectives.

If the category A is semisimple then one can construct D(A) explicitly. Recall
that an abelian category A is semisimple if every monomorphism (equivalently,
every epimorphism) in it splits. Examples of such categories are vector spaces
over a field, or representations of a finite group over a field of characteristic 0.

Let A be a complex in A. Since A is semisimple, each object An can be
noncanonically decomposed as An = Bn ⊕ Hn ⊕ En, where Bn is the im-
age of An−1 under dn−1, Bn ⊕ Hn is the kernel of dn, and Hn is mapped
isomorphically to Hn(A). The differential dn : An → An+1 sends an element
(b, h, e) ∈ Bn ⊕ Hn ⊕ En to (dne, 0, 0). It follows that En is mapped by dn

isomorphically to Bn+1. Moreover, A as a complex is isomorphic to H ⊕ G
where H has zero differential, Gn = Bn ⊕ En, and dnG sends (b, e) to (dne, 0).

We next claim that G is zero in K(A). Consider a homotopy un : Gn → Gn−1

which sends (b, e) ∈ Bn ⊕ En to (0, e′) where e′ is the preimage of b in En−1

1The fact that the category of quasi-coherent sheaves on an arbitrary scheme is
Grothendieck is due to Gabber. See [2] tag 077K for an exposition.
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under dn. Clearly un+1dnG + dn−1G un is the identity map, so idG is homotopy
equivalent to zero in K(A), which means precisely that G = 0. Therefore A is
isomorphic to H in K(A).

Let f : A1 → A2 be a morphism of complexes. Consider splittings Ai = Bni ⊕
Hn
i ⊕Eni as above. Since Bn1 is the image of An−11 under dn−1, and f commutes

with dn, it maps Bn1 to Bn2 . Similarly, since Bn1 ⊕Hn
1 is the kernel of dn, f maps

it to Bn2 ⊕Hn
2 . Therefore f maps Hn

1 to Hn
2 . We conclude that f splits into a

direct sum of morphisms fH : H1 → H2 and fG : G1 → G2.

If s : A1 → A2 is a quasi-isomorphism, then the induced map H1 → H2 is an
isomorphism, because Hn

i is functorially isomorphic to Hn(Ai). Since Ai ∼= Hi

in K(A) we conclude that every quasi-isomorphism in K(A) is an isomorphism.
Thus D(A) ∼= K(A) with the quotient functor being identity.

More precisely, one can consider the full subcategory K(A)0 ⊂ K(A) consisting
of complexes with differential zero. Notice that K(A)0 is a countable product
of copies of A indexed by n ∈ Z. Sending a complex A to its cohomology
viewed as a complex with differential zero defines a functor Q : K(A)→ K(A)0.
By the discussion above Q is an equivalence of categories. As a consequence
D(A) ∼=

∏
n∈ZA with the quotient functor being Q.

2 Calculus of fractions

Let C be a category, S a collection of morphisms in C. In diagrams below we will
use double arrows⇒ to symbolise the fact that respective morphisms belong to
S.

Definition 2.0.2. Let X,Y objects of C. A right fraction from X to Y is a
diagram

X ′

s

z�

f

  
X Y

Dually, a left fraction from X to Y is a diagram

Y ′>>
f

\d
s

X Y.

Unfortunately in the literature there is no agreement on which fractions are left,
and which are right. We follow conventions of Stacks Project.
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In general the collection of fractions from X to Y is not a set but only a proper
class.

Definition 2.0.3. Consider a pair of right fractions:

X ′′

s2

�


f2

��

X ′

s1y� f1 !!
X Y

We say that the outer fraction dominates the inner one if there is an arrow
t : X ′′ ⇒ X ′ from S such that the diagram

X ′′

s2

�


t
��

f2

��

X ′

s1y� f1 !!
X Y

is commutative.

Definition 2.0.4. Consider a pair of right fractions:

X ′

s1

z�

f1

  

Y ′

s2

z�

f2

  
X Y Z.

(1)

The fractions in such a diagram are called composable.

We say that composition of fractions in (1) is defined if the diagram (1) can be
completed to a commutative diagram

X ′′

t

y�

g

!!
X ′

s1

z�

f1

!!

Y ′

s2

y�

f2

  
X Y Z.
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The outer fraction
X ′′

s1t

y�

f2g

!!
X Z.

is called the composition of fractions in (1).

Definition 2.0.5. Suppose that the category C is preadditive. Consider a pair
of right fractions

X ′

s1

y�

f1

!!
X Y

X ′′
s2

]e

f2

==

If there exists an object X ′′′ and morphisms t1 : X ′′′ ⇒ X ′, t2 : X ′′′ ⇒ X ′′ such
that the diagram

X ′

s1

y�

f1

!!
X X ′′′

t1

KS

t2
��

Y

X ′′
s2

]e

f2

==

commutes, then we say that the right fraction

X ′′′

s1t1=s2t2

y�

f1t1+f2t2

!!
X Y

is the sum of fractions in (2.0.5).

Relations and operations on left fractions are defined in the same way.

Definition 2.0.6. Let C be a category, and S a collection of morphisms. We
say that S is satisfies right Ore conditions if the following properties hold.

(2-out-of-3) Every isomorphism is in S, and if in an expression fg = h two
morphisms belong to S then so is the third.
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(RMS2) Every left fraction

X

f   

Y

sz�
X ′

can be completed to a commutative square

X ′′

t

y�

g

!!
X

f !!

Y

sy�
X ′

in which t belongs to S.

(RMS3) If for a pair of morphisms f, g : X → Y there exists a morphism s : Y ⇒
Y ′ from S such that sf = sg, then there exists a morphism t : X ′ ⇒ X from S
such that ft = gt.

Definition 2.0.7. Let C be a category, and S a collection of morphisms. We
say that S is satisfies left Ore conditions if the 2-out-of-3 property holds, as well
as the following properties.

(LMS2) Every right fraction

X Y

X ′
t

\d

g

>>

can be completed to a commutative square

X ′′

X

f
==

Y

s

]e

X ′
t

]e

g

==

in which s belongs to S.

(LMS3) If for a pair of morphisms f, g : X → Y there exists a morphism t : X ′ ⇒
X from S such that ft = gt, then there exists a morphism s : Y ⇒ Y ′ from S
such that sf = sg.
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Proposition 2.0.8. Let C be a category, and S a collection of morphisms sat-
isfying right Ore conditions. Consider a pair of right fractions

X1

t1

z�

g1

  
X Y

X2

t2

\d

g2

>>

(2)

If there exists a left fraction

X

f   

Y

sz�
X ′

such that the diagram
X1

t1

z�

g1

  
X X ′//

f ks s
Y

X2

t2

\d
g2

>>

is commutative, then there exists a right fraction dominating both fractions in
(2).

If S satisfies left Ore conditions then the same statement holds with the roles of
left and right fractions interchanged.

Proof. First complete the left fraction

X1

t1 �$

X2

t2z�
X

to a diagram
X3

t′

}}

t′′

�%
X1

t1 �%

X2

t2y�
X
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The morphism t′ belongs to S by 2-out-of-3 property.

Notice that sg1t
′ = ft1t

′ = ft2t
′′ = sg2t

′′. RMS3 implies that there exists a
morphism t′′′ : X4 ⇒ X3 from S such that g1t

′t′′′ = g2t
′′t′′′. Thus the outer

fractions in the diagrams

X4

��

�
 ��

X3

t′

��
X1

t1z�
g1   

X Y

X4

��

�
 ��

X3

t′′

��
X2

t2z�
g2   

X Y

coincide. By construction this outer fraction dominates both fractions in (2).

Proposition 2.0.9. Let C be a category, and S a collection of morphisms sat-
isfying right Ore conditions. Consider a pair of right fractions

X1

t1

z�

g1

  
X Y

X2

t2

\d

g2

>>

(3)

Suppose that they dominate another right fraction, i.e. that there is a commu-
tative diagram

X1

t1

z�

g1

  
X X3

sks f //
��

t′

KS

t′′

Y

X2

t2

\d

g2

>>

Then there exists a right fraction dominating both fractions in (3).

If S satisfies left Ore conditions then left fractions enjoy the same property.
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Proof. Consider a diagram

X1

t′

y�

g1

  
X3 Y//

f ks id
Y

X2

t′′

]e

g2

>>

(4)

Proposition 2.0.8 shows that there exists a right fraction

X4

t′′′

y�

g

  
X3 Y

dominating both right fractions in (4). Then the right fraction

X4

st′′′

z�

g

  
X Y

dominates both right fractions in (3).

Definition 2.0.10. We say that two right fractions from X to Y are equivalent
if there exists a third one dominating both of them. Similarly for left fractions.

The relation on fractions defined above is obviously reflexive and symmetric.
Proposition 2.0.9 shows that it is also transitive when S satisfies right (respec-
tively, left) Ore conditions.

As it was mentioned earlier, the collection of all right (left) fractions from X to
Y does not form a set in general. Let us introduce definitions to deal with this
problem.

Definition 2.0.11. Let C be a category, and S a collection of morphisms. Let
X be an object of C.

(1) We say that S is locally small on the right at X if there exists a set of
morphisms SX = {si : Xi ⇒ X} from S such that whenever s : X ′ ⇒ X is
a morphism in S then there exists a morphism si : Xi ⇒ X from SX , and a
morphism t : Xi ⇒ X ′ from S such that the diagram

Xi si
+3

t �$

X

X ′
s

:B
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is commutative. We say that S is locally small on the right if it is locally small
on the right at every X ∈ C.

(2) We say that S is locally small on the left at X if there exists a set of
morphisms SX = {si : X ⇒ Xi} from S such that whenever s : X ⇒ X ′ is
a morphism in S then there exists a morphism si : X ⇒ Xi from SX , and a
morphism t : X ′ ⇒ Xi from S such that the diagram

X
si

+3

s �$

Xi

X ′
t

:B

is commutative. We say that S is locally small on the left if it is locally small
on the left at every X ∈ C.

Proposition 2.0.12. Let C be a category, S a collection of morphisms, and
X,Y objects of C. Suppose that S is locally small on the right at X. Let
SX = {si : Xi ⇒ X} be a set of morphisms as in definition 2.0.11. Let FX,Y be
the set of all right fractions of the form

Xi

si

z�

f

  
X Y

where si runs over SX , and f runs over HomC(Xi, Y ).

(1) Every right fraction from X to Y is dominated by one from FX,Y .

(2) If S satisfies right Ore conditions then the relation on FX,Y induced from the
relation on the collection of all fractions from X to Y is reflexive, symmetric,
and transitive. Hence we obtain a set of equivalence classes FX,Y /∼.

(3) FX,Y /∼ is independent of the choice of SX in the following sense.

If F ′X,Y is any set of right fractions from X to Y then the equivalence relation
on all fractions from X to Y induces an equivalence relation ∼ on F ′X,Y . There
is a unique map ϕ : F ′X,Y /∼ → FX,Y /∼ characterized by the property that it
sends an equivalence class represented by a fraction f ∈ F ′X,Y to an equivalence
class containing a fraction that dominates f .

Now, if we start from a set of morphisms S′X satisfying conditions of defi-
nition 2.0.11 and construct a set of fractions F ′X,Y as in (1) then the map
ϕ : F ′X,Y /∼ → FX,Y /∼ described above is a bijection.
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Proof. (1) Indeed, every right fraction

X ′

s

z�

f

  
X Y

fits into a commutative diagram

Xi

si

�


t

��
X ′

s
z�

f

  
X Y

for some si : Xi ⇒ X from SX , and some t : Xi ⇒ X ′. The fraction

Xi

si

z�

ft

  
X Y

belongs to FX,Y and dominates the initial fraction by construction.

(2) Transitivity of the induced relation follows at once from proposition (2.0.9).

(3) Omitted.

An analogous proposition holds for left fractions, and collections S which are
small on the left.

Definition 2.0.13. In the following we will say that a class C ∈ FX,Y /∼
dominates a fraction if C contains a fraction dominating the given one.

Theorem 2.0.14. Let C be a category, and S a class of morphisms.

(1) Suppose that S satisfies right Ore conditions, and is locally small on the
right. Consider a category CS defined as follows.

(1a) Objects of CS are objects of C.

(1b) For two objects X,Y ∈ CS the set of morphisms HomCS (X,Y ) is defined
to be equal to the set FX,Y /∼ constructed in proposition 2.0.12 (2).
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(1c) For an object X ∈ CS we define the identity morphism in HomCS (X,Y ) to
be the class dominating the fraction

X
idX

z�

idX

  
X X

(5)

(1d) Given three objects X,Y, Z ∈ CS and classes of fractions f ∈ HomCS (X,Y ),
g ∈ HomCS (Y, Z) we define the composition gf as follows. We pick arbi-
trary representatives from f and g and set gf to be the class of fractions from
HomCS (X,Z) dominating the composition of representatives as described in def-
inition 2.0.4.

The category CS is well-defined (i.e. satisfies category axioms), and locally small.

(2) Suppose that S satisfies left Ore conditions, and is locally small on the
left. Then analogously to (1) we define a category CS using left fractions. This
category is again well-defined an locally small.

Proof. (1) Consider a pair of composable fractions

X ′

s1

z�

f1

  

Y ′

s2

z�

f2

  
X Y Z.

(6)

Since S satisfies right Ore conditions, there exists a right fraction

X ′′

t

y�

g

!!
X ′ Y ′

(7)

such that the diagram

X ′′

t

y�

g

!!
X ′

s1

z�

f1

!!

Y ′

s2

y�

f2

  
X Y Z

(8)

is commutative. Proposition 2.0.8 shows that equivalence class of the outer
fraction in this diagram is independent of the choice of completing fraction (7).
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To show that equivalence class of the composition is idepended of the choice
of representatives it is enough to check that this class does not change when
we replace the fractions in (6) by dominating ones. So, suppose that given a
diagram

X ′′

t′

��

Y ′′

t′′

��
X ′

s1

y�

f1

!!

Y ′

s2

z�

f2

  
X Y Z

we completed it to the diagram

W
tw

y�

fw

!!
X ′′

t′

��

Y ′′

t′′

��
X ′

s1

y�

f1

!!

Y ′

s2

y�

f2

!!
X Y Z.

(9)

The fraction
W

t′tw

y�

t′′fw

  
X ′ Y ′

(10)

also completes the diagram (6). Proposition 2.0.8 shows that the fraction (10)
is equivalent to (7), so the outer fraction in (9) is equivalent to that in (8). Thus
the composition operation is well-defined.

Demonstrating that it is associative is not hard at all. Consider three compos-
able fractions

X ′

s1

z�

f1

  

Y ′

s2

z�

f2

��

Z ′

s3

{�

f3

  
X Y Z T,

which we will denote f , g and h (from left to right). We complete them to a
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diagram

W

t

y�

g

!!
X ′′

t1

y�

g1

!!

Y ′′

t2

y�

g2

!!
X ′

s1

z�

f1

!!

Y ′

s2

y�

f2

!!

Z ′

s3

y�

f3

  
X Y Z T.

(11)

Now, the fraction
W

t

y�

g

!!
X ′′ Y ′′

g2

!!
Z ′

completes the diagram

X ′′

t1

y�

g1

!!
X ′

s1

z�

Y ′

f2

��

Z ′

s3

{�

f3

  
X Z T,

so that the outer fraction in (11) represents the composition h ◦ (g ◦ f). On the
other hand, the fraction

W

t

y�

g

!!
X ′′

t1

y�

Y ′′

X ′

16



completes the diagram

Y ′′

t2

y�

g2

!!
X ′

s1

z�

f1

  

Y ′

s2

z�

Z ′

f3

  
X Y T,

so that the outer fraction in (11) represents the composition (h ◦ g) ◦ f .

It remains to check that our composition operation respects identity morphisms.
To do it it is enough to calculate the composition of fraction (5) itself with an
arbitrary fraction, since our operation respects equivalence of fractions.

Consider a diagram

X
idX

z�

idX

  

X ′

s

z�

f

  
X X Y.

It can be completed to a diagram

X ′

s

z�

idX′

!!
X

idX

{�

idX

  

X ′

s

z�

f

  
X X Y,

so that the composition is represented by a fraction

X ′

s

z�

f

  
X Y,

which is precisely what we need. Composition in the other order is done simi-
larly.

(2) The proof for left fractions is analogous.

Proposition 2.0.15. Let C be a preadditive category, and S a class of mor-
phisms.
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(1) Suppose that S satisfies right Ore conditions, and is locally small on the right.
Consider the category CS constructed in theorem 2.0.14 (1). Define addition of
morphisms in it as follows.

Let X,Y ∈ CS, and let f, g ∈ HomCS (X,Y ). We pick representatives from f
and g, and construct their sum as described in the definition 2.0.5. We then let
f + g to be the class from HomCS (X,Y ) dominating the constructed sum.

The category CS with this addition structure is preadditive.

(2) If S satisfies left Ore conditions, and is locally small on the left then the
category CS constructed in theorem 2.0.14 (2) has a preadditive structure defined
in a similar way.

Proof. Left as an excercise.

Theorem 2.0.16. Let C be a category, and S a class of morphisms. Suppose
that S satisfies right Ore conditions, and is locally small on the right. Consider
a functor Q : C → CS which sends an object X ∈ C to itself, and a morphism
f : X → Y to the class of fractions from X to Y dominating the fraction

X
idX

z�

f

  
X Y

(1) The functor Q is well-defined.

(2) The pair (CS , Q) is a localization of C at S.

(3) If C is preadditive then Q is additive. If C is additive, then so is CS.

(4) An analogous statement is true for left fractions.

Proof. (1) Q(id) = id by construction. Let f : X → Y , g : Y → Z be morphisms.
Consider a diagram

X
idX

z�

f

  
X

idX

z�

f

  

Y
idY

z�

g

  
X Y Z.

This diagram commutes, so Q(g)Q(f) is equal to the class dominating the outer
fraction in this diagram. But this fraction is precisely Q(gf). So, Q commutes
with composition of morphisms.
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(2) We split the proof in three parts verifying conditions (1), (2), and (3) of
definition 1.1.1.

(2.1) We first check that Q sends S to isomorphisms. Consider a fraction

X
idX

z�

s

  
X Y.

with s from S. We claim that the fraction

X

s

z�

idX

  
Y X.

is its inverse. Indeed both diagrams

X
idX

z�

idX

  
X

idX

z�

s

  

X

s

z�

idX

  
X Y X,

and
X

idX

z�

idX

  
X

s

z�

idX

  

Y
idX

z�

s

  
Y X Y

are commutative. The outer fraction in the first diagram is just the identity
fraction, and the outer fraction in the second diagram dominates the identity
fraction Y → Y via s : X → Y .

(2.2) Let F : C → D be a functor which sends all morphisms from S to iso-
morphisms. Define FS : CS → D by sending an object X ∈ CS to F (X), and a
fraction

X ′

s

z�

f

  
X Y
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to F (f)F (s)−1. First of all, FS is well-defined on morphisms, since if we replace
a fraction above by a dominating fraction

X ′′

t
��
X ′

s

y�

f

!!
X Y

then F (f)F (s)−1 is replaced by F (ft)F (st)−1 = F (f)F (t)F (t)−1F (s)−1 =
F (f)F (s)−1.

Consider a composition diagram

X ′′

t

y�

g

!!
X ′

s1

z�

f1

!!

Y ′

s2

y�

f2

  
X Y Z.

Since the square in the middle commutes, we obtain an equality F (s2)−1F (f1) =
F (g)F (t)−1, so that F (f2g)F (s1t)

−1 = F (f2)F (s2)−1F (f1)F (s1)−1. Thus FS
is a functor. The composition FSQ sends an object X ∈ CS to F (X), and a
morphism f : X → Y to F (f), which means that we have a natural isomorphism
F → FSQ.

(2.3) Let F : C → D be a functor which sends all morphisms from S to isomor-
phisms, F1, F2 : CS → D functors, and ηi : F → FiQ natural isomorphisms.

To define a natural transformation ξ : F1 → F2 notice that the equation ξQ◦η1 =
η2 and the fact that Q is surjective on objects forces us to set ξX = η2,X ◦ η−11,X .
So the natural transformation ξ : F1 → F2 is unique, and we only need to check
that the maps ξX = η2,X ◦ η−11,X indeed give a natural transformation.

Since ηi is a natural isomorphism FiQ(s) is an isomorphism for every s from S.
Next, notice that a fraction

X ′

s

z�

f

  
X Y

(12)
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is tautologically a composition of fractions

X ′

s

z�

idX′

!!

X ′

idX′

y�

f

  
X X ′ Y.

The fraction on the left is Q(s)−1 and the fraction on the right is Q(f). Thus
Fi of the fraction (12) is equal to FiQ(f) ◦ FiQ(s)−1.

Now the commutative diagram

F1(X)
F1Q(s)←−−−− F1(X ′)

F1Q(f)−−−−−→ F1(Y )xη1,X xη1,X′ xη1,Y
F (X)

F (s)←−−−− F (X ′)
F (f)−−−−→ F (Y )yη2,X yη2,X′ yη2,Y

F2(X)
F2Q(s)←−−−− F2(X ′)

F2Q(f)−−−−−→ F2(Y )

shows that ξ is indeed a natural transformation. Therefore (CS , Q) is a local-
ization of C at S.

The rest of the proof is left as an excercise.

3 The homotopy category

3.1 Cone

For each q ∈ Z we define a translation functor [q] : Comp(A) → Comp(A) as
follows. If A is an object of Comp(A), then

A[q]n = An+q, dnA[q] = (−1)qdn+1
A .

If f : A→ B is a morphism, then

(f [q])n = fn+q.

By construction, [0] is the identity functor, [q′′] ◦ [q′] = [q′′ + q′], Hn(A[q]) =
Hn+q(A), and Hn(f [q]) = Hn+q(f).

Note that [q] alters the sign of the differential. Beware that in some texts,
notably in [4], the complex is shifted in opposite direction.
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Let A
f−→ B be a morphism of complexes. The cone of f is the complex A[1]⊕B

with the differential (
dA[1] 0
f dB

)
.

Since [1] alters the sign of dA, the square of this matrix is zero, and we indeed
get a complex.

The cone of f fits into a short exact sequence of complexes:

0 // B
i // cone(f)

p // A[1] // 0, (13)

where p is the inclusion of B as a direct summand to A[1] ⊕ B, and p is the
projection. This short exact sequence gives rise to a cohomology long exact
sequence

Hn(A)
δ // Hn(B)

i // Hn(cone(f))
p // Hn+1(A)

δ // Hn+1(B).

Proposition 3.1.1. The boundary map δ : Hn−1(A[1]) → Hn(B) in the long
exact sequence above is equal to the map Hn(A)→ Hn(B) induced by f .

Proof. For the moment we assume that the objects of A have underlying sets.
Let a ∈ Hn(A) be an element. It is the image of (a, 0) ∈ Hn−1(cone(f)n−1)
under the projection Hn−1(cone(f)) → Hn−1(A[1]). Applying the differential
to this element we obtain (−da, fa) = (0, fa), since a is a cocycle. Clearly,
this element comes from fa ∈ Hn−1(B). The case of arbitrary A is done by
applying Freyd-Mitchell embedding theorem.

So, cones can be used to associate a long exact cohomology sequence to arbitrary
morphism of complexes.

Proposition 3.1.2. The morphism A
f−→ B is a quasi-isomorphism if and only

if cone(f) is acyclic.

Proof. Follows at once from the long exact sequence and proposition 3.1.1.

3.2 Hom complex

Let R be a commutative ring, and A an abelian category over R. Let A,B be
complexes of objects of A. Denote Homn(A,B) the R-module of maps f : A→
B[n] which do not necessarily commute with differentials. In other words,

Homn(A,B) =
∏
i∈Z

Hom(Ai, Bi+n).

If f ∈ Homn(A,B) then f i : Ai → Bi+n will denote the i-th coordinate.
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A differential of an element f ∈ Homn(A,B) is defined as follows:

(dn(A,B)f)i = di+nB ◦ f i − (−1)nf i+1 ◦ diA.

Since dn+1
(A,B) ◦ d

n
(A,B) = 0 for each n, we obtain a complex Hom•(A,B).

Given three complexes A,B,C there are composition maps

Homm(B,C)⊗Z Homn(A,B)
◦−→ Homn+m(A,C).

Hence an element f ∈ Homm(B,C) defines a map

f∗ : Hom•(A,B)→ Hom•(A,C)[m],

(f∗)
n : u 7→ f ◦ u.

Since f∗ is an element of Homn(Hom•(A,B),Hom•(A,C)), it makes sense to
ask what is the differential of this element. The answer is:

d(f∗) = (df)∗.

Similarly, an element f ∈ Homn(A,B) defines a map

f∗ : Hom•(B,C)→ Hom•(A,C)[m],

(f∗)n : u 7→ (−1)nmu ◦ f.

Notice the sign change. With such a sign convention we obtain a formula

d(f∗) = (df)∗.

Proposition 3.2.1. Hom• is a functor Comp(A)◦ × Comp(A) → Comp(R).
It descends to the level of homotopy categories.

Proof. Let g : B → C be a morphism of complexes. The map g∗ : Hom•(A,B)→
Hom•(A,C) is a morphism of complexes since d(g∗) = (dg)∗ = 0. If g : B →
C[−1] is a homotopy, then (dg)∗ = d(g∗) is a homotopy. Similar reasoning works
for the contravariant argument of Hom•.

Throughout the rest of this section we will view Hom• as a functor from
Comp(A)◦ × Comp(A) to Comp(R).

Proposition 3.2.2. H0(Hom•(A,B)) = HomK(A)(A,B).

Proof. Omitted.

Proposition 3.2.3. Hom•(A,B[1]) = Hom•(A,B)[1].

Proof. Omitted.
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Proposition 3.2.4. Let T be a complex, and f : A → B a morphism of com-
plexes. Hom•(T,−) transforms the short exact sequence associated to the cone
of f to the short exact sequence associated to the cone of f∗ : Hom•(T,A) →
Hom•(T,B).

Proof. Omitted.

The behaviour of Hom• with respect to the first argument is more complicated.
One needs natural transformations which change signs in a nontrivial way.

Let us define a map α1 : Hom•(A[1], B)→ Hom•(A,B)[−1]. Notice that

Homn(A[1], B) = Homn−1(A,B) = (Hom•(A,B)[−1])n.

The map αn1 acts on Homn−1(A,B) by multiplication by (−1)n.

Proposition 3.2.5. α1 : Hom•(A[1], B) → Hom•(A,B)[−1] is a natural iso-
morphism of complexes.

Proof. Let u ∈ Homn−1(A,B) be an element. The differential of Hom•(A[1], B)
transforms it to dn−1(A,B)u, while the differential of Hom•(A,B)[−1] sends u to

−dn−1(A,B)u. Hence α1(dn(A[1],B)u) = dn(A,B)[−1]α1(u).

Let T be a complex, and f : A → B be a morphism of complexes. We want to
define a map β : Hom•(cone(f), T )→ cone(f∗[−1]). By construction,

Homn(cone(f), T ) = Homn(B, T )⊕Homn−1(A, T ) = cone(f∗[−1])n.

We let βn act on Homn(B, T )⊕Homn−1(A, T ) by sending an element (u, v) to
(u, (−1)nv).

Proposition 3.2.6. β : Hom•(cone(f), T ) → cone(f∗[−1]) is an isomorphism
of complexes.

Proof. A direct computation shows that the differential of Hom•(cone(f), B)
sends an element (u, v) ∈ Homn(B, T )⊕Homn−1(A, T ) to

(dn(B,T )u, d
n−1
(A,T ) − (−1)nf∗u),

while the differential of cone(f∗[−1]) sends it to

(dn(B,T )u,−d
n−1
(A,T )v + f∗u).

Now it is a formality to check that β commutes with the differentials.

Proposition 3.2.7. Let f : A → B be a morphism of complexes. Consider a
short exact sequence associated to the cone of f :

0 −−−−→ B
i−−−−→ cone(f)

p−−−−→ A[1] −−−−→ 0.
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Let T be a complex. There is a commutative diagram

Hom•(A[1], T )
p∗−−−−→ Hom•(cone(f), T )

i∗−−−−→ Hom•(B, T )yα1

yβ ∥∥∥
Hom•(A, T )[−1] −−−−→ cone(f∗[−1]) −−−−→ Hom•(B, T ).

The lower row of this diagram is the short exact sequence associated to the cone
of f∗[−1] : Hom•(B, T )[−1]→ Hom•(A, T )[−1].

Proof. It is a straightforward computation.

3.3 Triangles

Let A be an abelian category.

Definition 3.3.1. A triangle in K(A) is a diagram of the form

A −−−−→ B −−−−→ C −−−−→ A[1].

A triangle is called distinguished, if it is isomorphic to a triangle of the form

A
f−−−−→ B

i−−−−→ cone(f)
p−−−−→ A[1],

where the second and the third map are as in (13).

In the category K(A) distinguished triangles play the role of short exact se-
quences.

Proposition 3.3.2. Let T be a complex. Let A
f−→ B

i−→ C
p−→ A[1] be a

distinguished triangle. It induces long exact sequences

Hom(T,A[n])
f [n]∗ // Hom(T,B[n])

i[n]∗ // Hom(T,C[n])

p[n]∗

��
Hom(T,A[n+ 1]) //

and

Hom(C[n], T )
i[n]∗ // Hom(B[n], T )

f [n]∗ // Hom(A[n], T )

p[n]∗

��
Hom(C[n− 1], T ) //

of Hom-modules in K(A).
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We stress that a similar claim is completely false for Comp(A) in place of K(A).

Proposition 3.3.3. For every A ∈ K(A) the cone of idA : A→ A is zero.

Proof. Let C = cone(idA). According to the long exact sequences above,
HomK(A)(C,C) = 0. So, idC = 0.

Proposition 3.3.4. Let A
f−→ B

i−→ C
p−→ A[1] be a triangle. If it is distin-

guished, then i ◦ f = 0, p ◦ i = 0, and f [1] ◦ p = 0 in K(A).

Proof. Follows from the long exact sequences above.

Notice that the fact that i ◦ f = 0 and f [1] ◦ p = 0 is not instantly obvious. One
needs homotopies to trivialize these compositions.

4 The derived category

4.1 Verifying Ore conditions

Theorem 4.1.1. Let A be an abelian category. Consider the homotopy category
K(A). The collection of quasi-isomorphisms in K(A) satisfies left, and right
Ore conditions.

Proof. An isomorphism is clearly a quasi-isomorphism, and 2-out-of-3 property
is also immediate. For the rest we restrict ourselves to left Ore conditions.

Let us verify the second condition. Let A,B be complexes. Consider a right
fraction

A B

A′.

s

\d

f

>>

Let C be the cone of (s, f). By definition, it fits into a a distinguished triangle

A′
(s,f)−−−→ A⊕B i−→ C

p−→ A′[1].

Let jA : A→ A⊕B, jB : B → A⊕B be the inclusions. Set g = ijAs, t = −ijAf .
The fact that i ◦ (s, f) = 0 means that the diagram

C

A

g
>>

B

t

``

A′
s

\d

f

>>
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commutes. We want to show that t is a quasi-isomorphism.

Consider long exact cohomology sequence of C:

Hn(A′)
Hn(s,f)−−−−−→ Hn(A)⊕Hn(B)

Hn(i)−−−−→ Hn(C)
Hn(p)−−−−→ Hn+1(A′).

The composition of Hn(s, f) with the projection Hn(A)⊕Hn(B)→ Hn(A) is
Hn(s), which is an isomorphism. Hence Hn(s, f) is split, and therefore injective.
Since it holds for all n, Hn(p) = 0, and Hn(i) is surjective. We thus obtain
short exact sequences

0→ Hn(A′)
Hn(s,f)−−−−−→ Hn(A)⊕Hn(B)

Hn(i)−−−−→ Hn(C)→ 0.

As observed above, this sequence splits on the left, and the kernel of the splitting
map is exactly 0⊕Hn(B). Hence Hn(t) = Hn(i)Hn(jB) is an isomorphism.

Let us verify the third condition. Due to additivity it is enough to prove the
following. If f : A → B is such a map, that there exists a quasi-isomorphism
s : A′ → A with the property that fs = 0, then there exists a quasi-isomorphism
t : B → B′ with the property that tf = 0.

Let C be the cone of s, and let i : A → C be the inclusion map. Since fs = 0,
the long exact sequence of Hom-modules shows that there exists g : C → B such
that gi = f . Let B′ be the cone of g, and t : B → B′ the inclusion map. By
construction, tf = tgi = 0. On the other hand, C is acyclic because s is a
quasi-isomorphism. So, the long exact sequence of B′ = cone(g) shows that t is
a quasi-isomorphism.

On the contrary the collection of quasi-isomorphisms in Comp(A) satisfies nei-
ther left nor right Ore conditions in general.

Corollary 4.1.2. Let A be an abelian category equivalent to a small category.
The derived categories D(A), D+(A), D−(A), Db(A) exist.

Proof. Indeed, K(A) is equivalent to a small category. After replacing it by a
small category we see that the collection of quasi-isomorphisms in it becomes a
set. Hence this collection is locally small both on the left an on the right. Since
it satisfies left, and right Ore conditions, we obtain the conclusion.

This corollary applies, for example, to the category of modules of finite type
over a ring,2 or coherent OX -modules over a noetherian scheme.

2Stictly speaking, the fact that a naively defined category of modules of finite type over a
ring is equivalent to a small category requires a choice over a proper class.
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4.2 K-injective, and K-projective complexes

Let A be an abelian category.

Definition 4.2.1. A complex A ∈ K(A) is called acyclic if Hn(A) = 0 for all
n.

Definition 4.2.2. A complex I ∈ K(A) is called K-injective if

HomK(A)(A, I) = 0

for every acyclic complex A. A complex P is called K-projective if

HomK(A)(P,A) = 0

for every acyclic complex A.

Proposition 4.2.3. If a complex I is K-injective, and A is arbitrary, then every
right fraction in K∗(A)

A′

s

z�

f

��
A I

can be completed to a commutative triangle

A′

s

z�

f

��
A

g // I

in a unique way. A dual statement holds for K-projective complexes and left
fractions.

Proof. Let C = cone(s). Since s is a quasi-isomorphism, C is acyclic, and
so is C[−1]. Thus HomK(A)(C, I) = 0, and HomK(A)(C[−1], I) = 0. Apply-

ing HomK(A)(−, I) to the triangle A
s−→ A′ → C → A[1] we conclude that

HomK(A)(−, I) transforms s to an isomorphism, which is precisely the claim of
the proposition.

Proposition 4.2.4. A bounded below complex of injective objects is K-injective.
A bounded above complex of projective objects is K-projective.

Proof. Let I be a bounded below complex of injective objects, and A an acyclic
complex. Let f : A→ I be a morphism of complexes. We are going to construct
a map h : A→ I[−1] such that f = dI ◦ h+ h ◦ dA.
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Suppose that there are morphisms hn : An → In−1, hn−1 : An−1 → In−2, such
that fn−1 = dn−2I ◦ hn−1 + hn ◦ dn−1A . By assumptions,

dn−1I ◦ hn ◦ dn−1A = dn−1I ◦ (fn−1 − dn−2I ◦ hn−1) = dn−1I ◦ fn−1.

Hence
(fn − dn−1I ◦ hn) ◦ dn−1A = fn ◦ dn−1A − dn−1I ◦ fn−1 = 0.

This in turn means that the map (fn − dn−1I ◦ hn) : An → In factors through
dn−1A (An−1). Since A is acyclic, the map dnA : An/dn−1A (An−1) → An+1 is an
injection. Since In is injective, there exists a map hn+1 : An+1 → In, such that

dnA ◦ hn+1 = fn − dn−1I ◦ hn.

In other words, hn+1 continues the homotopy.

To start the homotopy, take an N such that In = 0 for all n 6 N − 1. Set
hn = 0 for n 6 N . Since fn = 0 as soon as n 6 N − 1, the condition
fn = dIn−1 ◦ hn + hn+1 ◦ dnA is satisfied for n 6 N − 1. Thus we can continue to
construct the homotopy from the step N + 1, as described above.

The case of projective objects is dealt with in a similar way.

Theorem 4.2.5. Let A be an abelian category. Assume that A has enough
injectives.

(1) The collection of quasi-isomorphisms in K+(A) is locally small on the left.
As a consequence, D+(A) exists, and can be constructed as in theorem 2.0.14
(2).

(2) Let I ∈ K+(A) be a K-injective complex, and A ∈ K+(A) an arbitrary
complex. The natural map

HomK+(A)(A, I)→ HomD+(A)(A, I)

is an isomorphism.

(3) Let K+(InjA) ⊂ K+(A) be the full subcategory of K-injective complexes.
The quotient functor Q : K+(A)→ D+(A) induces an equivalence of K+(InjA)
and D+(A).

An analogous statement with + replaced by − holds if A is an abelian category
having enough projectives.

Proof. (1) Since A has enough injectives, for every complex A ∈ K+(A) there
exists a quasi-isomorphism s : A → I, where I ∈ K+(A) is a complex of injec-
tive objects. Thus I is K-injective. Proposition 4.2.3 shows that every quasi-
isomorphism t : A→ A′ factors through s : A→ I. Thus in the definition 2.0.11
(2) we can take SA = {s : A→ I}.
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(2) We will repeatedly use the fact that the collection of quasi-isomorphisms
satisfies both left and right Ore conditions.

Consider a left fraction
A

f   

I

s{�
A′

and complete it to a square

A′′

t

z�

g

  
A

f   

I

sz�
A′

By proposition 4.2.3 there exists a morphism h : A → I such that the upper
triangle in the diagram

A′′

t

z�

g

  
A

f   

h
// I

sz�
A′

is commutative. Hence sht = sg = ft. As a consequence, there exists a quasi-
isomorphism u : A′ → A′′′ such that ush = uf . Next, consider the diagram

A

f !!

h
//

��

I

sz�

�


A′

u

��
A′′′

The outer fraction in this diagram dominates both the initial fraction, and the
fraction Q(h). Therefore the natural map HomK+(A)(A, I)→ HomD+(A)(A, I)
is surjective.
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Proving that this map is injective instantly reduces to the following problem.
Consider a commutative triangle

A

0   

h
// I

s{�
A′

We want to show that h = 0. Since sh = 0 there exists a quasi-isomorphism
t : A′′ → A such that the diagram

A′′

t

z�

0

  
A

h
// I

is commutative. Unicity part of proposition 4.2.3 shows that h = 0.

(3) By (2) the quotient functor Q : K+(A)→ D+(A) restricted to K+(InjA) is
fully faithful. Since every complex in K+(A) has a bounded below injective res-
olution, the functor Q : K+(InjA)→ D+(A) is essentially surjective. Therefore
it is an equivalence of categories.

Proposition 4.2.6. Let A be an abelian category having enough injectives. Let
A,B be objects of A. Consider them as complexes with objects placed in degree
0. There is a natural isomorphism

HomD+(A)(A,B[n])→ ExtnA(A,B).

In particular, A is a full subcategory of D+(A).

In fact this proposition holds without the assumption that A has enough injec-
tives.

Proof. Replacing B by its injective resolution I we obtain an isomorphism
HomD+(A)(A,B[n]) → HomD+(A)(A, I[n]). Since I[n] is K-injective, the latter
Hom-module is naturally isomorphic to HomK+(A)(A, I[n]) = Hn(Hom•(A, I)).
But Hom•(A, I) is just a result of termwise application of HomA(A,−) to I, the
resolution of B. Hence Hn(Hom•(A, I)) = Rn HomA(A,B) = ExtnA(A,B).

4.3 Constructing derived functors

Proposition 4.3.1. Let A be an abelian category having enough injectives, and
i : K+(InjA)→ K+(A) the inclusion functor. There exists a functor

r : K+(A)→ K+(InjA),

and a natural transformation τ : idA → ir such that r sends quasi-isomorphisms
to isomorphisms, and τ is a quasi-isomorphism at each object.
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Proof. For every object A ∈ K+(A) pick an injective resolution τA : A → IA,3

and set r(A) = IA.

Let f : A→ B be a morphism. Consider a commutative diagram

A
f−−−−→ ByτA yτB

IA IB .

Since τA is a quasi-isomorphism, there exists a unique morphism If : IA → IB
such that the diagram

A
f−−−−→ ByτA yτB

IA
If−−−−→ IB

is commutative. Set r(f) = If . By unicity r(idA) = idA, and r(gf) = r(g)r(f),
so r is a functor. Naturality of τ : idA → i ◦ r is clear.

Let A,B be abelian categories. Assume that A has enough injectives, and
that D+(B) exists. Let QA : K+(A) → D+(A), and QB : K+(B) → D+(B) be
quotient functors.

Pick a functor r : K+(A) → K+(InjA) as in proposition 4.3.1. Since r sends
quasi-isomorphisms to isomorphisms, it gives rise to a functor r̂ : D+(A) →
K+(InjA), and a natural isomorphism η : r → r̂QA.

Let F : A → B a functor. Consider a functor F : K+(A)→ K+(B) obtained by
termwise application of F . Define a functor RF : D+(A)→ D+(B) as

RF = QBFir̂,

where i : K+(InjA)→ K+(A) is the inclusion functor.

We also define a natural transformation µ : QBF → RF ◦QA as

µ = QBF (i(η)τ).

The functor RF is called the total right derived functor of F . Notice that for
an object A ∈ A viewed as a complex

Hn(RF (QAA)) ∼= Hn(Fir(A)) = Hn(F (IA)) = RnF (A),

where RnF is the usual n-th right derived functor of F . Also notice that to
define RF we do not need to assume that F is left exact (and even additive). If
F is not left exact then it is not true in general that H0(RF (A)) = F (A).

3Since the collection of objects of A is not a set in general, this step relies on a sort of
axiom of choice over proper classes.
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Proposition 4.3.2. The pair (RF, µ) has the following universal property.
Given a functor G : D+(A)→ D+(B), and a natural transformation µ′ : QBF →
GQA there exists a unique natural transformation ξ : RF → G such that ξQAµ =
µ′.

Proof. Since τ : idK+(A) → ir is a quasi-isomorphism, QA(τ) is an isomorphism,
so GQA(τ) : GQA → GQAir is an isomorphism. Hence there exists a unique
natural transformation ψ : QBFir → GQA such that the diagram

QBF
µ′ //

QBF (τ)

��

GQA

GQA(τ)

��
QBFir

µ′ir //

ψ
99

GQAir.

is commutative.

The functor QA is surjective on objects, by construction. Hence we can define
a natural transformation ξ : RF → G by associating the arrow ψA ◦ i(η)−1 with
an object A. One then easily checks that ξ is indeed a natural transformation.
Unicity of ξ follows from the fact that ψ is unique.

Thus the functor RF constructed in such a way is in some sense unique. In
particular, a different choice of functorial injective resolutions (r, τ) gives rise
to an isomorphic total right derived functor RF .

There is a general notion of total right (left) derived functors on derived or
triangulated categories (see [1], [4] for details). Since it is based on a notion of
an exact functor between triangulated categories, we refrain from discussing it.
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