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This talk is based on The Stacks Project [3] and Serre [2], but presented in a more digestible

manner suggested by Maxim.

1 Tsen’s Theorem and Implications

The vanishing of H?(Spec(L), Gy,) for fields L is very important to study, as it implies van-

ishing of higher cohomology groups in certain cases.

For the proof of Tsen’s theorem see Gille and Szamuely [1, Theorem 6.2.8].

Definition 1.1. A field K is called Cy if for all integers n > d > 0 and every homoge-
neous polynomial F' € K[X,...,X,] of degree d there exists a nontrivial zero of F' in K.

Equivalently, every hypersurface of degree d in IP’”K_l has a K-rational point.

Lemma 1.2. Let K be a Ci-field. Then every algebraic extension L/K is also Cy.

Proof. Let f € L[zy,...,z,] be a homogeneous polynomial of degree d < n. Choose a basis
v1,...,Um of the K-vector space L. We make a change of variables by
m
€T; = Z xijvj,
j=1
where x;; are new variables. Now consider the equation N, r(f(x1,...,2n)) = 0, which

becomes a homogeneous equation of degree md in mn variables over K after the change of
variables. Since md < mn there is a solution (ay;) of this equation in K by assumption.
Changing back to the initial coordinates and using the fact that the norm of an element is

zero if and only if the element is zero, we find a solution of f =0 in L. O

Theorem 1.3 (Tsen). Let K be a field extension of transcendence degree 1 over an alge-
braically closed field k. Then K is Cf.

Proof. By Lemma 1.2 we can reduce to the purely transcendental case K = k(t). Let
f € k(t)[x1,...,x,] be a homogeneous polynomial of degree d < n. We can get rid of
denominators and assume without loss of generality that f € k[t][z1,...,z,]. We choose an

integer N > 0 and make a change of variables by
N
€Ty — Z aijtj
§=0
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for new variables a;;. Plugging this into f and regrouping by powers of ¢ we obtain an

equation we need to solve:

dN+r

0= f(z1,...,2,) = Z felaro, ..y ann)t*
=0

where r is the maximal degree of all coefficients of f and all f, are homogeneous polynomials
over k in the variables a;;. This equation is satisfied if and only if there exist elements a;; € k
such that fy(a1p,...,ann) = 0 for all 0 < ¢ < dN + r. So we have dN + r + 1 equations
in n(N + 1) variables, which need to have a common solution in k. For large enough N we
have dN + 7+ 1 < n(N + 1), so the equations define a nonempty Zariski closed subset of
PrN+n=1 wwhich has a k-rational point because k is algebraically closed. We conclude that f

has a k(t)-rational point and so K is Cf. O

Corollary 1.4. Let K be a field extension of transcendence degree 1 over an algebraically
closed field k. Then Br(K) = 0.

Proof. Pick a separable closure K® of K. Let D be a central division algebra over K. By
Alex’ talk there is a separable extension L of K which splits D. In particular, there exists
an integer n > 0 and a homomorphism ¢ : D — M,,(K?*) which becomes an isomorphism by
tensoring @ : DRy K* = M, (K*). Let o be an element of Gal(K*®/K). By abuse of notation
also denote o for the induced endomorphism on M,,(K*) and for the induced endomorphism

L and

on D @k K*®. By the Noether-Skolem Theorem for the two homomorphisms copoo™
@ there exists an invertible element b € M, (K*®) such that co oot =b-@-b~!. For every

element d € D @ K*® with d = o(d) we then have
o(det(3(d))) = det(o o B(d)) = det(b- F(d) - b1) = det(F(d)).

Therefore the determinant induces a homomorphism det : D — K. Choose a K-basis
V1, ...,Uy2 of D. We then have the equation det(zzil x;v;) = 0, which is a homogeneous

2 variables. Since D is divisible, there is no solution of

polynomial over K of degree n in n
this equation. By Tsen’s Theorem 1.3 we conclude that therefore n? > n and so n = 1, which

implies D = K. O

Corollary 1.5. Let K be a field extension of transcendence degree 1 over an algebraically

closed field k. Then for every separable algebraic extension L/ K we have H*(Spec(L), Gy,) = 0.

Proof. Such a field L has also transcendence degree 1 over k, so by 1.4 the Brauergroup
vanishes Br(L) = 0. By Alex’ talk we know that H?(Spec(L), Gy,) = Br(L) which implies the

statement. ]



2  Vanishing in Group Cohomology

2.1 Finite Groups

In this section let G be a finite group and H < G a subgroup. By a “G-module” we mean a
discrete left G-module.

Definition 2.1. For an H-module M we define G-modules
ind% M := Z[G] Rz M, g-(r@m):=grem

Indg M = HomZ[H](Z[G]v M), (g-f)(z):= f(zg).

Lemma 2.2. Let S C G be a set of representatives for the right H-cosets in G. For every
H-module M the map

Ind§ M — indG M, f—> g7 f(g)
geSs

1s a G-equivariant isomorphism, which is independent of S.

Proof. The independence of S follows from

(hg) ' ® f(hg) =g 'h" ' @ hf(9) =g ' ® f(g)

forallhe H and g € G and f € Indg M. The G-equivariance follows from

Yogle@-Ne =D g '®flgr)=> w0 fl¢)=2- > 4 @)
ges geSs g'eSx g'eSx
for all f € Ind% M and x € G with the substitution ¢’ := gx and using the fact that Sz is

again a set of representatives for the right H-cosets in G.

To prove that it is an isomorphism, note that by bilinearity of the tensor product, every
element in ind% M can be written as 3 ges g~ @ by for certain elements by, € M. Then the
map defined by

xg_lbg if Hg= Hzx

Zg*1®b9»—> Go>xw—
ges 0 otherwise

for x € G is an inverse. O

Lemma 2.3. The functor Indg is exact and preserves injectives.

Proof. The functor Indg is right adjoint to the restriction functor resg defined by the
inclusion H — G and so left exact. On the other hand ind% is left adjoint to the restriction

functor resg and so right exact. As the two functors are isomorphic, we conclude exactness.



Let I be an injective H-module. Then the functor Homg g (—, I) is exact. Furthermore, the
restriction functor resg is exact. Hence the composition Homz, (resg —,I) is exact, and it
is isomorphic to the functor HomZ[G}(—, Indg I) by adjointness. We conclude that Indg Iis

an injective G-module. O

Proposition 2.4 (Shapiro’s Lemma). For every q > 0 and every H-module M there is an
isomorphism HY(G,Ind% M) = HI(H, M).

Proof. By Lemma 2.3 the functor Indg is exact and preserves injectives. By the adjunction
Homyg (Z,Ind§ M) = Homyy ;) (Z, M) the set of G-invariants of Ind$ M is isomorphic to
the set of H-invariants of M. We conclude the statement. O

Lemma 2.5. Let S C G be a set of representatives for the right H-cosets in G. For every
G-module M the map

ndf M — M, f—> g f(g)
ges

18 a G-equivariant homomorphism.

Proposition 2.6. Set n:=[G : H|. For every q > 0 and every G-module M the multiplica-
tion by n map HY(G, M) — HY(G, M) factors through HY(H, M).

Proof. The composition of M — Ind% M, m — (g — gm) with the homomorphism of
Lemma 2.5 is the homomorphism M — M given by multiplication by n. Thus the multipli-
cation by n map HY(G, M) — H(G, M) factors through HY(G,Ind$, M), which is isomorphic
to H1(H, M) by Proposition 2.4. O

Corollary 2.7. Let n := |G|. Then for all ¢ > 0 and every G-module M the cohomology
group HY(G, M) is n-torsion.

Proof. By Proposition 2.6 the multiplication by n map on HY(G, M) factors through the
group HY({1}, M) = 0. O

2.2 Profinite Groups

Let G be a profinite group.

Definition 2.8. Let A be an abelian group. We define Ind® A := colimy Ind{Gl/}U A, where

the colimit runs over all open normal subgroups U C G. Note that Ind® A is equipped with

a G-action.



Lemma 2.9. Let A be an abelian group. Then for every ¢ > 1 we have Hq(G,IndG A)=0.

Proof. Note that for every open normal subgroup U’ C G the set of U’-invariants satisfies

. G/U 4 G/U’
(colim Ind(}” 4)”" = Indfyy" A.

By Proposition 3.7 of Lukas’ notes it follows

HY(G, Ind A) = colim HY(G/U, (Ind” 4)"') = colim H(G//U, Ind{}” 4) =0,

where the vanishing follows from Proposition 2.4. O

Recall: For a prime p a group of order a power of p is called a p-group. A limit of finite
p-groups is called a pro-p-group. A subgroup G, of a profinite group G is called Sylow p-
subgroup if it is closed and for every open normal subgroup U C G the image of G, in G/U
is a Sylow p-subgroup.

Lemma 2.10. Let p be a prime and let G be a finite p-group. Fvery finite p-power-torsion
G-module M with M # 0 satisfies ME # 0.

Proof. The set M ~. MY is the disjoint union of all orbits that are of length > 2. The length
of every such orbit must be divisible by p since G is a p-group. Hence |M ~. M| and |M|
are both divisible by p. We conclude that |[M| > 1. O

Lemma 2.11. Let G be a pro-p-group. FEvery finite p-power-torsion G-module M admits a

filtration with subquotients isomorphic to Z/pZ with trivial action of G.

Proof. Because M is finite, the stabilizers are open normal subgroups of G and there are
only finitely many of them. Hence there is an open normal subgroup U C G which induces
an action of the finite p-group G/U on M. By Lemma 2.10 we conclude that M G/U £ 0.

We use induction on m := |M]|, which is a p-power by the assumption on M. For m = p
the statement is true because MV £ 1 and so ME/V = M, hence M = Z/pZ and the
action is trivial. Now assume that m > p and that the statement is true for every finite
p-power-torsion G-module. The module M /M G/U is again a p-power-torsion G-module and
it has cardinality stricly less than m. By the induction hypothesis, there is a filtration of
M/MS/U with subquotients isomorphic to Z/pZ. This filtration lifts to a filtration of M
which contains ME/V with subquotients isomorphic to Z/pZ. Since G/U acts trivially on
MGE/V we can extend this filtration to the left by a composition series of M&/U. O



We can now prove our main vanishing theorem of the cohomology of profinite groups:

Theorem 2.12. Let G be a profinite group. Assume that for every prime p there is a Sylow
p-subgroup G, C G such that HQ(GP,Z/pZ) = 0. Then HY(G, M) = 0 for every q > 2 and

every torsion G-module M.
Proof. We procede in three steps:

(a) Let p be a prime. We prove that every finite p-power-torsion G-module M satis-
fies H*(G,M) = 0. Let G, C G be a Sylow p-subgroup and let U C G be an
open normal subgroup. Then the index a := [G/U : G,/(Gp N U)| is not divis-
ible by p. By Proposition 2.6 the multiplication by a map on H?(G/U, MY) fac-
tors through H?(G,/(G, NU), MY). But because MU is a p-power-torsion G-module
the multiplication by a¢ map is an isomorphism. Hence the induced restriction map
H?(G/U,MY) — H*(G,/(G, N U), MY) is injective. By taking the colimit we obtain
an injective restriction map H?*(G, M) — H?(Gp, M). By Lemma 2.11 there is a fil-
tration 0 C My C My C --- C My = M whose subquotients are isomorphic to Z/pZ.
Let 0 < i < £. By assumption H*(G,,Z/pZ) = 0, so by using the long exact sequence
in cohomology associated to 0 — M; — M;y; — Z/pZ — 0 we conclude that there is
a surjection H?(Gp, M;) — H?(Gp, M;41). Since this is true for every 0 < i < £ and
My = 7 /pZ we conclude that there is a surjection 0 = H*(G,,, My) — H?(G,, M) and
hence the latter vanishes. Using the injective map H?(G, M) — H?*(G), M) constructed
above we conclude that H?(G, M) = 0.

(b) We prove that every torsion G-module M satisfies H?(G, M) = 0. We have
H?(G, M) = colim H2(G/U, MY)

= colim H2 lim MY [p"
coUlm (G/U,@co;m [p"])

o @colim co(ljim H2(G/U, MY [p"])
p

o @coym H?(G, M[p"])

where the vanishing follows from part (a). Here we also used that for the finite groups
G /U group cohomology commutes with filtered colimits and direct sums, as can be seen

by using the Z-bar resolution to compute group cohomology.

(c) The natural injective map MY — Indfl/}U M passes by taking colimits to an injective

homomorphism of G-modules M — Ind® M. Consider the short exact sequence 0 —
M — Ind° M — (IndG M)/M — 0. Passing to the long exact sequence and using
Lemma 2.9 we conclude that HI (G, (Ind® M) /M) = H(G, M) for all ¢ > 2. Because
M is torsion, so is Ind® M and so is (Ind“ M)/M. By using (b) and an induction on ¢
we conclude that HY(G, M) = 0 for all g > 2. O



We can get rid of the assumption that M is torsion by paying with one cohomological degree:

Corollary 2.13. Let G be a profinite group. If for every prime p there exists a Sylow p-
subgroup G, of G such that H*(G), Z/pZ) = 0, then HY(G, M) = 0 for all ¢ > 3 and every
G-module M .

Proof. Note that for every open normal subgroup U C G the group HY(G/U, MY ® Q) is
torsion for ¢ > 1 by Corollary 2.7 but also free because we tensored by Q. Hence these
cohomology groups are zero. We conclude that HY(G, M ® Q) = colimy HY(G /U, MY @ Q)

is zero, too. Consider the exact sequence
0= Migys > M > MQ - Mc®Q/Z — 0,
which we split into two:
0 — Mygs > M — N — 0, 0>N->MeQ—->MxQ/Z— 0.

Note that M ® Q/Z is torsion, so by Theorem 2.12 its cohomology groups in degree ¢ > 2
vanish. By a long exact sequence we obtain isomorphisms HY(G, N) = HY(G,M ® Q) = 0
for ¢ > 3. By another long exact sequence and the same argument we therefore obtain
isomorphisms HY(G, M) = HY(G,N) =0 for all ¢ > 3. O

3 Vanishing in Etale Cohomology

We state the following proposition without proof:

Proposition 3.1 (Artin-Schreier sequence). Let p be a prime. For every scheme X over F,

the natural sequence of étale sheaves

x — x—zP

0— Z/pZ — G, Go — 0

18 exact.

Lemma 3.2. For every field K and every q > 1 we have H?(Spec(K),G,) = 0.

Proof. Let K* be a separable closure of K and let G be the Galois group of K® over K. Let
U C G be an open normal subgroup and let L be the corresponding finite Galois extension
of K. By the normal basis theorem there exists an element = € L such that (o(z))secq is a

K-basis of L. We obtain a group homomorphism

L> Z koo(x (T k1) € Ind?l/}U
ocG

This is in fact an isomorphism of G/U-modules. We conclude that colimy, G, (L) = colimy, L =

Ind® K, where the colimit runs over all finite Galois extensions of K in K*. Using Proposition



2.7 of Lukas’ talk and Lemma 2.9 we obtain for all ¢ > 1:

HY(Spec(K), G,) = Hq(G,colLim Go(L)) = HY(G,Ind“ K) = 0.

Now we can state our main vanishing theorem:

Theorem 3.3. Let K be a field. If H*(Spec(L),Gun) = 0 for every separable algebraic
extension L/K then H?(Spec(K), Gy) = 0 for every g > 1.

Proof. The case ¢ = 1 is Hilbert 90 (see Prop. 4.1. in Lukas’ notes). The cohomology
group H?(Spec(K),Gy,) is zero by assumption. Let ¢ > 3. We verify the conditions of
Corollary 2.13. Let K*® be a separable closure of K and denote by G the Galois group.
For every prime p pick a Sylow p-subgroup G, of G and let K, be the corresponding field
extension of K inside K*. We will prove that H?(G), Z/pZ) = 0 for every prime p. There are

two cases:

(a) Assume that char(K) # p. Then we can use the long exact sequence induced by the
Kummer sequence

1= pp =G =Gy —1

on Spec(K,) to deduce that H?(Spec(K,), i1,) = 0. Indeed H'(Spec(K}), Gy,) vanishes
by Hilbert 90 and H?(Spec(K),), Gy,) vanishes by assumption. On Spec(K}) we have an
isomorphism of étale sheaves Z/pZ = p,; this can be checked on stalks. We conclude
that H2(G), Z/pZ) = H?(Spec(K}), Z/pZ) = 0.

(b) Assume that char(K) = p. Then we use the long exact sequence coming from the Artin

Schreier sequence of Proposition 3.1
0—=>2Z/pZ — G, — Gy — 0

to deduce that H?(Spec(K,),Z/pZ) = 0. Indeed H!(Spec(K,),G,) = 0 for ¢ > 1 by
Lemma 3.2, so H?(G,, Z/pZ) = H?(Spec(K}), Z/pZ) = 0.

We see that the assumptions of Corollary 2.13 are satisfied and conclude together with the
case of ¢ =1 and ¢ = 2 above that HY(Spec(K), Gy,) = 0 for all ¢ > 1. O

By Corollary 1.5 we obtain

Corollary 3.4. Let K be a field of transcendence degree 1 over an algebraically closed field.
Then HY(Spec(K),Gy,) = 0 for every ¢ > 1.
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