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This talk is based on The Stacks Project [3] and Serre [2], but presented in a more digestible

manner suggested by Maxim.

1 Tsen’s Theorem and Implications

The vanishing of H2(Spec(L),Gm) for fields L is very important to study, as it implies van-

ishing of higher cohomology groups in certain cases.

For the proof of Tsen’s theorem see Gille and Szamuely [1, Theorem 6.2.8].

Definition 1.1. A field K is called C1 if for all integers n > d > 0 and every homoge-

neous polynomial F ∈ K[X1, . . . , Xn] of degree d there exists a nontrivial zero of F in K.

Equivalently, every hypersurface of degree d in Pn−1K has a K-rational point.

Lemma 1.2. Let K be a C1-field. Then every algebraic extension L/K is also C1.

Proof. Let f ∈ L[x1, . . . , xn] be a homogeneous polynomial of degree d < n. Choose a basis

v1, . . . , vm of the K-vector space L. We make a change of variables by

xi :=

m∑
j=1

xijvj ,

where xij are new variables. Now consider the equation NL/K(f(x1, . . . , xn)) = 0, which

becomes a homogeneous equation of degree md in mn variables over K after the change of

variables. Since md < mn there is a solution (αij) of this equation in K by assumption.

Changing back to the initial coordinates and using the fact that the norm of an element is

zero if and only if the element is zero, we find a solution of f = 0 in L.

Theorem 1.3 (Tsen). Let K be a field extension of transcendence degree 1 over an alge-

braically closed field k. Then K is C1.

Proof. By Lemma 1.2 we can reduce to the purely transcendental case K = k(t). Let

f ∈ k(t)[x1, . . . , xn] be a homogeneous polynomial of degree d < n. We can get rid of

denominators and assume without loss of generality that f ∈ k[t][x1, . . . , xn]. We choose an

integer N > 0 and make a change of variables by

xi :=
N∑
j=0

aijt
j
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for new variables aij . Plugging this into f and regrouping by powers of t we obtain an

equation we need to solve:

0 = f(x1, . . . , xn) =
dN+r∑
i=0

f`(a10, . . . , anN )t`

where r is the maximal degree of all coefficients of f and all f` are homogeneous polynomials

over k in the variables aij . This equation is satisfied if and only if there exist elements aij ∈ k
such that f`(a10, . . . , anN ) = 0 for all 0 6 ` 6 dN + r. So we have dN + r + 1 equations

in n(N + 1) variables, which need to have a common solution in k. For large enough N we

have dN + r + 1 6 n(N + 1), so the equations define a nonempty Zariski closed subset of

PnN+n−1, which has a k-rational point because k is algebraically closed. We conclude that f

has a k(t)-rational point and so K is C1.

Corollary 1.4. Let K be a field extension of transcendence degree 1 over an algebraically

closed field k. Then Br(K) = 0.

Proof. Pick a separable closure Ks of K. Let D be a central division algebra over K. By

Alex’ talk there is a separable extension L of K which splits D. In particular, there exists

an integer n > 0 and a homomorphism ϕ : D →Mn(Ks) which becomes an isomorphism by

tensoring ϕ̃ : D⊗KKs
∼=−→Mn(Ks). Let σ be an element of Gal(Ks/K). By abuse of notation

also denote σ for the induced endomorphism on Mn(Ks) and for the induced endomorphism

on D ⊗K Ks. By the Noether-Skolem Theorem for the two homomorphisms σ ◦ ϕ̃ ◦ σ−1 and

ϕ̃ there exists an invertible element b ∈Mn(Ks) such that σ ◦ ϕ̃ ◦ σ−1 = b · ϕ̃ · b−1. For every

element d ∈ D ⊗K Ks with d = σ(d) we then have

σ(det(ϕ̃(d))) = det(σ ◦ ϕ̃(d)) = det(b · ϕ̃(d) · b−1) = det(ϕ̃(d)).

Therefore the determinant induces a homomorphism det : D → K. Choose a K-basis

v1, . . . , vn2 of D. We then have the equation det(
∑n2

i=1 xivi) = 0, which is a homogeneous

polynomial over K of degree n in n2 variables. Since D is divisible, there is no solution of

this equation. By Tsen’s Theorem 1.3 we conclude that therefore n2 > n and so n = 1, which

implies D ∼= K.

Corollary 1.5. Let K be a field extension of transcendence degree 1 over an algebraically

closed field k. Then for every separable algebraic extension L/K we have H2(Spec(L),Gm) = 0.

Proof. Such a field L has also transcendence degree 1 over k, so by 1.4 the Brauergroup

vanishes Br(L) = 0. By Alex’ talk we know that H2(Spec(L),Gm) ∼= Br(L) which implies the

statement.
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2 Vanishing in Group Cohomology

2.1 Finite Groups

In this section let G be a finite group and H < G a subgroup. By a “G-module” we mean a

discrete left G-module.

Definition 2.1. For an H-module M we define G-modules

indGHM := Z[G]⊗Z[H] M, g · (x⊗m) := gx⊗m

IndGHM := HomZ[H](Z[G],M), (g · f)(x) := f(xg).

Lemma 2.2. Let S ⊂ G be a set of representatives for the right H-cosets in G. For every

H-module M the map

IndGHM → indGHM, f 7→
∑
g∈S

g−1 ⊗ f(g)

is a G-equivariant isomorphism, which is independent of S.

Proof. The independence of S follows from

(hg)−1 ⊗ f(hg) = g−1h−1 ⊗ hf(g) = g−1 ⊗ f(g)

for all h ∈ H and g ∈ G and f ∈ IndGHM . The G-equivariance follows from∑
g∈S

g−1 ⊗ (x · f)(g) =
∑
g∈S

g−1 ⊗ f(gx) =
∑
g′∈Sx

xg′−1 ⊗ f(g′) = x ·
∑
g′∈Sx

g′−1 ⊗ f(g′)

for all f ∈ IndGHM and x ∈ G with the substitution g′ := gx and using the fact that Sx is

again a set of representatives for the right H-cosets in G.

To prove that it is an isomorphism, note that by bilinearity of the tensor product, every

element in indGHM can be written as
∑

g∈S g
−1 ⊗ bg for certain elements bg ∈ M . Then the

map defined by

∑
g∈S

g−1 ⊗ bg 7→

G 3 x 7→
xg−1bg if Hg = Hx

0 otherwise


for x ∈ G is an inverse.

Lemma 2.3. The functor IndGH is exact and preserves injectives.

Proof. The functor IndGH is right adjoint to the restriction functor resGH defined by the

inclusion H → G and so left exact. On the other hand indGH is left adjoint to the restriction

functor resGH and so right exact. As the two functors are isomorphic, we conclude exactness.
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Let I be an injective H-module. Then the functor HomZ[H](−, I) is exact. Furthermore, the

restriction functor resGH is exact. Hence the composition HomZ[H](resGH −, I) is exact, and it

is isomorphic to the functor HomZ[G](−, IndGH I) by adjointness. We conclude that IndGH I is

an injective G-module.

Proposition 2.4 (Shapiro’s Lemma). For every q > 0 and every H-module M there is an

isomorphism Hq(G, IndGHM) ∼= Hq(H,M).

Proof. By Lemma 2.3 the functor IndGH is exact and preserves injectives. By the adjunction

HomZ[G](Z, IndGHM) ∼= HomZ[H](Z,M) the set of G-invariants of IndGHM is isomorphic to

the set of H-invariants of M . We conclude the statement.

Lemma 2.5. Let S ⊂ G be a set of representatives for the right H-cosets in G. For every

G-module M the map

IndGHM →M, f 7→
∑
g∈S

g−1 · f(g)

is a G-equivariant homomorphism.

Proposition 2.6. Set n := [G : H]. For every q > 0 and every G-module M the multiplica-

tion by n map Hq(G,M)→ Hq(G,M) factors through Hq(H,M).

Proof. The composition of M → IndGHM, m 7→ (g 7→ gm) with the homomorphism of

Lemma 2.5 is the homomorphism M →M given by multiplication by n. Thus the multipli-

cation by n map Hq(G,M)→ Hq(G,M) factors through Hq(G, IndGHM), which is isomorphic

to Hq(H,M) by Proposition 2.4.

Corollary 2.7. Let n := |G|. Then for all q > 0 and every G-module M the cohomology

group Hq(G,M) is n-torsion.

Proof. By Proposition 2.6 the multiplication by n map on Hq(G,M) factors through the

group Hq({1},M) = 0.

2.2 Profinite Groups

Let G be a profinite group.

Definition 2.8. Let A be an abelian group. We define IndGA := colimU Ind
G/U
{1} A, where

the colimit runs over all open normal subgroups U ⊂ G. Note that IndGA is equipped with

a G-action.
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Lemma 2.9. Let A be an abelian group. Then for every q > 1 we have Hq(G, IndGA) = 0.

Proof. Note that for every open normal subgroup U ′ ⊂ G the set of U ′-invariants satisfies

(colim
U

Ind
G/U
{1} A)U

′
= Ind

G/U ′

{1} A.

By Proposition 3.7 of Lukas’ notes it follows

Hq(G, IndGA) ∼= colim
U

Hq(G/U, (IndGA)U ) = colim
U

Hq(G/U, Ind
G/U
{1} A) = 0,

where the vanishing follows from Proposition 2.4.

Recall : For a prime p a group of order a power of p is called a p-group. A limit of finite

p-groups is called a pro-p-group. A subgroup Gp of a profinite group G is called Sylow p-

subgroup if it is closed and for every open normal subgroup U ⊂ G the image of Gp in G/U

is a Sylow p-subgroup.

Lemma 2.10. Let p be a prime and let G be a finite p-group. Every finite p-power-torsion

G-module M with M 6= 0 satisfies MG 6= 0.

Proof. The set M rMG is the disjoint union of all orbits that are of length > 2. The length

of every such orbit must be divisible by p since G is a p-group. Hence |M rMG| and |M |
are both divisible by p. We conclude that |MG| > 1.

Lemma 2.11. Let G be a pro-p-group. Every finite p-power-torsion G-module M admits a

filtration with subquotients isomorphic to Z/pZ with trivial action of G.

Proof. Because M is finite, the stabilizers are open normal subgroups of G and there are

only finitely many of them. Hence there is an open normal subgroup U ⊂ G which induces

an action of the finite p-group G/U on M . By Lemma 2.10 we conclude that MG/U 6= 0.

We use induction on m := |M |, which is a p-power by the assumption on M . For m = p

the statement is true because MG/U 6= 1 and so MG/U = M , hence M ∼= Z/pZ and the

action is trivial. Now assume that m > p and that the statement is true for every finite

p-power-torsion G-module. The module M/MG/U is again a p-power-torsion G-module and

it has cardinality stricly less than m. By the induction hypothesis, there is a filtration of

M/MG/U with subquotients isomorphic to Z/pZ. This filtration lifts to a filtration of M

which contains MG/U with subquotients isomorphic to Z/pZ. Since G/U acts trivially on

MG/U we can extend this filtration to the left by a composition series of MG/U .
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We can now prove our main vanishing theorem of the cohomology of profinite groups:

Theorem 2.12. Let G be a profinite group. Assume that for every prime p there is a Sylow

p-subgroup Gp ⊂ G such that H2(Gp,Z/pZ) = 0. Then Hq(G,M) = 0 for every q > 2 and

every torsion G-module M .

Proof. We procede in three steps:

(a) Let p be a prime. We prove that every finite p-power-torsion G-module M satis-

fies H2(G,M) = 0. Let Gp ⊂ G be a Sylow p-subgroup and let U ⊂ G be an

open normal subgroup. Then the index a := [G/U : Gp/(Gp ∩ U)] is not divis-

ible by p. By Proposition 2.6 the multiplication by a map on H2(G/U,MU ) fac-

tors through H2(Gp/(Gp ∩ U),MU ). But because MU is a p-power-torsion G-module

the multiplication by a map is an isomorphism. Hence the induced restriction map

H2(G/U,MU ) → H2(Gp/(Gp ∩ U),MU ) is injective. By taking the colimit we obtain

an injective restriction map H2(G,M) → H2(Gp,M). By Lemma 2.11 there is a fil-

tration 0 ⊂ M0 ⊂ M1 ⊂ · · · ⊂ M` = M whose subquotients are isomorphic to Z/pZ.

Let 0 6 i < `. By assumption H2(Gp,Z/pZ) = 0, so by using the long exact sequence

in cohomology associated to 0 → Mi → Mi+1 → Z/pZ → 0 we conclude that there is

a surjection H2(Gp,Mi) → H2(Gp,Mi+1). Since this is true for every 0 6 i < ` and

M0
∼= Z/pZ we conclude that there is a surjection 0 = H2(Gp,M0) → H2(Gp,M) and

hence the latter vanishes. Using the injective map H2(G,M)→ H2(Gp,M) constructed

above we conclude that H2(G,M) = 0.

(b) We prove that every torsion G-module M satisfies H2(G,M) = 0. We have

H2(G,M) ∼= colim
U

H2(G/U,MU )

∼= colim
U

H2(G/U,
⊕
p

colim
r

MU [pr])

∼=
⊕
p

colim
r

colim
U

H2(G/U,MU [pr])

∼=
⊕
p

colim
r

H2(G,M [pr])

= 0,

where the vanishing follows from part (a). Here we also used that for the finite groups

G/U group cohomology commutes with filtered colimits and direct sums, as can be seen

by using the Z-bar resolution to compute group cohomology.

(c) The natural injective map MU → Ind
G/U
{1} M passes by taking colimits to an injective

homomorphism of G-modules M → IndGM . Consider the short exact sequence 0 →
M → IndGM → (IndGM)/M → 0. Passing to the long exact sequence and using

Lemma 2.9 we conclude that Hq−1(G, (IndGM)/M) ∼= Hq(G,M) for all q > 2. Because

M is torsion, so is IndGM and so is (IndGM)/M . By using (b) and an induction on q

we conclude that Hq(G,M) = 0 for all q > 2.
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We can get rid of the assumption that M is torsion by paying with one cohomological degree:

Corollary 2.13. Let G be a profinite group. If for every prime p there exists a Sylow p-

subgroup Gp of G such that H2(Gp,Z/pZ) = 0, then Hq(G,M) = 0 for all q > 3 and every

G-module M .

Proof. Note that for every open normal subgroup U ⊂ G the group Hq(G/U,MU ⊗ Q) is

torsion for q > 1 by Corollary 2.7 but also free because we tensored by Q. Hence these

cohomology groups are zero. We conclude that Hq(G,M ⊗ Q) ∼= colimU Hq(G/U,MU ⊗ Q)

is zero, too. Consider the exact sequence

0→Mtors →M →M ⊗Q→M ⊗Q/Z→ 0,

which we split into two:

0→Mtors →M → N → 0, 0→ N →M ⊗Q→M ⊗Q/Z→ 0.

Note that M ⊗ Q/Z is torsion, so by Theorem 2.12 its cohomology groups in degree q > 2

vanish. By a long exact sequence we obtain isomorphisms Hq(G,N) ∼= Hq(G,M ⊗ Q) = 0

for q > 3. By another long exact sequence and the same argument we therefore obtain

isomorphisms Hq(G,M) ∼= Hq(G,N) = 0 for all q > 3.

3 Vanishing in Étale Cohomology

We state the following proposition without proof:

Proposition 3.1 (Artin-Schreier sequence). Let p be a prime. For every scheme X over Fp
the natural sequence of étale sheaves

0→ Z/pZ→ Ga
x 7→ x−xp−−−−−−−→ Ga → 0

is exact.

Lemma 3.2. For every field K and every q > 1 we have Hq(Spec(K),Ga) = 0.

Proof. Let Ks be a separable closure of K and let G be the Galois group of Ks over K. Let

U ⊂ G be an open normal subgroup and let L be the corresponding finite Galois extension

of K. By the normal basis theorem there exists an element x ∈ L such that (σ(x))σ∈G is a

K-basis of L. We obtain a group homomorphism

L 3
∑
σ∈G

kσσ(x) 7→ (τ 7→ kτ−1) ∈ Ind
G/U
{1} K.

This is in fact an isomorphism ofG/U -modules. We conclude that colimLGa(L) = colimL L ∼=
IndGK, where the colimit runs over all finite Galois extensions of K in Ks. Using Proposition
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2.7 of Lukas’ talk and Lemma 2.9 we obtain for all q > 1:

Hq(Spec(K),Ga) ∼= Hq(G, colim
L

Ga(L)) ∼= Hq(G, IndGK) = 0.

Now we can state our main vanishing theorem:

Theorem 3.3. Let K be a field. If H2(Spec(L),Gm) = 0 for every separable algebraic

extension L/K then Hq(Spec(K),Gm) = 0 for every q > 1.

Proof. The case q = 1 is Hilbert 90 (see Prop. 4.1. in Lukas’ notes). The cohomology

group H2(Spec(K),Gm) is zero by assumption. Let q > 3. We verify the conditions of

Corollary 2.13. Let Ks be a separable closure of K and denote by G the Galois group.

For every prime p pick a Sylow p-subgroup Gp of G and let Kp be the corresponding field

extension of K inside Ks. We will prove that H2(Gp,Z/pZ) = 0 for every prime p. There are

two cases:

(a) Assume that char(K) 6= p. Then we can use the long exact sequence induced by the

Kummer sequence

1→ µp → Gm → Gm → 1

on Spec(Kp) to deduce that H2(Spec(Kp), µp) = 0. Indeed H1(Spec(Kp),Gm) vanishes

by Hilbert 90 and H2(Spec(Kp),Gm) vanishes by assumption. On Spec(Kp) we have an

isomorphism of étale sheaves Z/pZ ∼= µp; this can be checked on stalks. We conclude

that H2(Gp,Z/pZ) ∼= H2(Spec(Kp),Z/pZ) = 0.

(b) Assume that char(K) = p. Then we use the long exact sequence coming from the Artin

Schreier sequence of Proposition 3.1

0→ Z/pZ→ Ga → Ga → 0

to deduce that H2(Spec(Kp),Z/pZ) = 0. Indeed Hq(Spec(Kp),Ga) = 0 for q > 1 by

Lemma 3.2, so H2(Gp,Z/pZ) ∼= H2(Spec(Kp),Z/pZ) = 0.

We see that the assumptions of Corollary 2.13 are satisfied and conclude together with the

case of q = 1 and q = 2 above that Hq(Spec(K),Gm) = 0 for all q > 1.

By Corollary 1.5 we obtain

Corollary 3.4. Let K be a field of transcendence degree 1 over an algebraically closed field.

Then Hq(Spec(K),Gm) = 0 for every q > 1.

8



References

[1] Gille, P., Szamuely, T. (2006). Central Simple Algebras and Galois Cohomol-

ogy (Cambridge Studies in Advanced Mathematics). Cambridge University Press.

doi:10.1017/CBO9780511607219

[2] J.-P. Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag,

Berlin, 2002. x+210 pp.

[3] Stacks Project authors. The Stacks Project. http://stacks.math.columbia.edu, Tag 0A2M.

9


	Tsen's Theorem and Implications
	Vanishing in Group Cohomology
	Finite Groups
	Profinite Groups

	Vanishing in Étale Cohomology

