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The goal of this talk is to prove the following Theorem:

Theorem 0.1 ([1] XIV Thm 1.1) Let f : X → S be a proper morphism and F a con-
structible torsion sheaf on X. Then for all q > 0, the higher direct image Rqf∗F is a
constructible sheaf.

1 Reduction to the projective case

Proposition 1.1 Let f : X → S be a finite morphism. Then the higher direct image
functors Rqf∗ preserve constructible sheaves.

To prove this, we need the following criterion for a sheaf to be constructible.

Proposition 1.2 ([1] IX 2.13 (iii)) Let X be a noetherian scheme and F an abelian
étale sheaf with finite stalks. Let

c : X → Z, x 7→ |Fx̄|

where x̄ is a geometric point of X lying above x. Then F is constructible if and only if for
all n ∈ Z, the preimage c−1(n) is constructible.

Proof. It suffices to show that the proposition is true in the case that c is constant. Let
V → X be an étale neighborhood of a geometric point of X such that F(V ) which surjects
onto FP . Let S ⊂ FP be a subst such that S maps bijectively FP . For any specialization
morphism P → Q of geometric points, we have a commutative diagram

(SV )P FP

(SV )Q FQ.

∼=

∼=

Since c(FQ) = c(FQ) <∞, the map FQ → FP is a bijection. Hence F is locally constant
at P . By noetherian induction we are done.
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Proof. [Proof of Prop 1.1] We will apply Proposition 1.2. For this we will compute the
stalks of Rqf∗GX . Since for q > 1, the higher direct images vanish, it suffices to compute
the stalks of f∗F . We choose a strata {πi : Xi → X} and constant sheaves Ci on Xi. Then
we have an injection F →

∏
i πiCi. Since the direct image functor is left exact, this gives

an injective morphism

f∗F →
∏
i

(f ◦ πi)∗Ci.

By [1] IX 2.6, it thus suffices to show that
∏

i(f ◦ πi)∗Ci is constructible. The stalk at
s ∈ S is

(f∗GX)s = G number of connected components of Xs .

The following Lemma concludes the proof. �

Lemma 1.3 ([2] 9.7.9.) Let f : X → S be a morphism of finite presentation. Then the
function

S → Z, s 7→ number of connected components of Xs

is constructible.

Proposition 1.4 (Chow’s Lemma) Let S be a noetherian scheme. Let f : X → S be a
proper morphism. There exists a commutative diagram

X X̄ PnS

S

f

π

consisting of a proper and surjective morphism π : X̄ → X and a closed embedding X̄ → PnS
such that π is generically an isomorphism on the target, i.e. there exists an open dense
subset U ⊂ X such that U ×X X̄ → U is an isomorphism.

Proposition 1.5 (Domination Trick) Let S be noetherian. Then f satisfies Theorem
0.1 if π, f̄ and f |X\U satisfy the Theorem.

Proof. Let j : U → X denote an open subset such that U ×X X̄ → U is an isomorphism.
Let ι : X\U → X be a the canonical inclusion. Then we have a short exact sequence

0→ j∗j
∗F → F → ι∗ι

∗F → 0

as can be seen on the stalks. Since the pull-back of a constructible sheaf is constructible,
the sheaf ι∗F is constructible and by Prop 1.1, the sheaf ι∗ι

∗F is constructible. Since the
subcategory of constructible sheaves is Serre, the sheaf j∗j ∗ F is constructible.
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Using the long exact sequence associated to this short exact sequence and the fact that
constructible sheaves are Serre, we see that to show that Rpf∗F is constructible it suffices
to show that both Rpf∗j∗j

∗F and Rpf∗ι∗ι
∗F are constructible. Since ι is acyclic, we have

Rpf∗(ι∗ι
∗F) ∼= Rp(f ◦ ι)∗ι∗F .

By assumption on f ◦ ι, the right hand side is constructible, thus so is the left hand side.
We denote j̄ : Ū := U ×X X̄ → X̄ and F̄ = π∗F . Then by the Lerray spectral sequence
we have

(Rpf∗)(R
qπ∗)(j̄∗j̄

∗F̄)⇒ Rp+qf̄∗(j̄∗j̄
∗F̄).

Since π is an isomorphism above X\Y , we have

Rpπ∗F = 0 for q > 0.

Hence we get
Rpf∗(π∗j̄∗j̄

∗F̄) ∼= Rpf̄∗(j̄∗j̄
∗F̄).

Furthermore, we have π∗j̄∗j̄
∗F̄ ∼= j∗j

∗F and thus Rpf∗(j∗j
∗F) ∼= Rpf̄∗(j̄∗j̄

∗F̄). By assump-
tion on f̄ , the right hand side is constructible, and thus so is the left hand side. Thus Rpf∗
preserves constructible sheaves. �

Proposition 1.6 To show that f |X\U satisfies the Theorem, it suffices to show that all
projective morphisms satisfy the Theorem.

Proof. Since f ◦ π = f̄ , and f̄ is projective and f proper, we know that π is projective.
Thus it remains to show that the Theorem is true for f |X\U if the Theorem is true for all
projective morphisms.

Denote X\U =: X1 and f1 := f |X\U . The morphism f1 is proper. By Chows Lemma, there
exists an S-scheme X̄1, a projective morphism f̄1 and a projective morphism π : X̄1 → X1

such that the diagram

X1 X̄1

S

commutes. In fact there exits a U1 ⊂ X1 such that U1 ×X1 X̄1 → U1 is an isomorphism.
Thus, by the Domination trick, and if all projective morphism satisfy the Theorem, it
suffices to show that the for X2 := X1\U1 the morphism f2 := f1|X2 : X2 → S satisfies the
Theorem. By Noetherian induction, we may therefore assume that for some n > 0, the
morphism fn is projective. Thus we have now reduced ourself to the case that f : X → S
is projective. �
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Proposition 1.7 Let f : U → V and g : V → W be morphisms such that the higher direct
image functors Rqf∗ and Rqg∗ preserve constructible sheaves. Then the higher direct image
functor Rq(g ◦ f)∗ also preserves constructible sheaves.

Proof. Let F be a constructible sheaf on U . Then we have the Lerray spectral sequence

Rpg∗R
qf∗F ⇒ Rp+q(g ◦ f)∗F .

This yields a filtration of Rn(g ◦ f)∗F where the quotients are constructible sheaves. Since
the subcategory of constructible sheaves are Serre, the sheaf Rn(g ◦ f)∗F is constructible.

�

Proposition 1.8 To show Theorem 0.1, it suffices to show the structure morphism P1
S →

S satisfy Theorem 0.1.

Proof. Let X → S be a projective morphism of fiberwise dimension n. Assume that the
Theorem is true for P1

S → S. We will show by induction on the fiberwise dimension of
X → S that the Theorem is true. After possibly shrinking S, there exits a commutative
diagram

X PnS

S

such that X → PnS is finite. By Prop 1.7 the composition of two morphisms who satisfy
the Theorem satisfies the Theorem, and since finite morphisms satisfy the Theorem, we
have reduced ourself to the case that f is the structure morphism PnS → S. Thus the case
that n = 1 is done.

Assume that every projective morphism of fiberwise dimension < n satisfies the Theo-
rem. Let X̄ be the blow-up of PnS at Pn−2

S . Then we have a commutative diagram

X̄

PnS P1
S

S .

a

f̄

f

Note that the morphism a is of fiberwise dimension 6 n− 1. Hence by induction assump-
tion, the morphisms X̄

a→ P1
S and P1

S → S satisfy the Theorem. Hence the morphism

X̄
f̄→ S satisfies the Theorem. Thus by the Domination trick, the morphism PnS → S

satisfies the Theorem. �
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2 Proof of the projective case

It remains to show the following special case.

Proposition 2.1 Let f : P1
S → S be the structure morphism. The higher direct image

functors Rqf∗ preserve constructible sheaves.

Proposition 2.2 Proposition 2.1 is true if the Theorem is true for all projective S-schemes
of relative dimension one f : X → S and constant torsion sheaves Z/(l).

Proof. Let F be a constructible sheaf on P1
S. Then there exists a stata

{πi : Xi → P1
S finite | i ∈ I}

and for each i ∈ I an ni such that we have an injective morphism

F →
⊕
i∈I

πi∗Z/(ni).

Thus there exits a resolution F → G• where Gp =
⊕

πi,p∗Z/(ni,p). Since finite morphism
are acyclic, we get a spectral sequence

Rq(π ◦ πi,p)∗Z/(ni,p)⇒ Rp+qπ∗F .

It suffices to show that all π ◦ πi,p satisfy the Theorem, since then we have a filtration
of Rp+qπ∗F who’s quotient consist of constructible sheaves. But since the subcategory of
constructible sheaves is Serre, this means that Rp+qπ∗F is also constructible. �

Proposition 2.3 Proposition 2.2 is true if the Theorem is true for all smooth and projec-
tive curves X → S and constant torsion sheaves.

Proof. We may assume that S is of finite type over Z, affine and integral. Denote
S = SpecR and let ν be the generic point. By [2] 17.15.14. , there exists a finite field
extension K ′/k(ν) such that there exits a projective smooth k(ν)-scheme X̃ν , a finite
surjection X̃ν → Xν := X ×R k(ν). Denote by Xi the irreducible components of Xred

ν .
Then we have a construction

Xν ← Xred
ν ← tXi ← tX̃i =: X̃ν .

Now let R′ be the integral closure of R in K ′. Since R is of finite type over Z, the ring R′

is finite over R. Then there exists an r ∈ R and X→ SpecR′[1
r
] a projective smooth such

that Xν = X̃ν . Then since R[1
r
]→ R′[1

r
] is finite, it suffices to show the Theorem for R′[1

r
].

We want to show that there exists an R-morphism X→ X. We have a cartesian diagram

Xnorm
K XK PnK

X PnR
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We will show that the morphism X → PnR factors through X → PnR. By construction, on
the generic fiber of R, we know that the image of Xν is contained in the image of Xν .
The ideal sheaves of the images are I, J ⊂ OPn

R
are thus such that I|ν ⊂ J |ν . These ideal

sheaves are finitely generated, thus there exist finitely many elements of k(ν) which are
needed to include any element of I|ν into J |ν . Thus, by localizing at those elements, we see
that there exists an open neighborhood U of ν such that I|U ⊂ J |U . Thus, after shrinking
S = SpecR and renaming it R, we may assume that X factors through X. Then we have
a commutative diagram

X X

SpecR.

where X→ SpecR is smooth and projective, X → SpecR is projective and thus the mor-
phism X→ X is also projective, surjective and thus quasi-finite.

There exists an open locus in X such that the morphism X→ X is finite. Since X→ X is
projective, we can shrink SpecR again and consider the fiber-products of X and X above
this open subset of SpecR, such that the morphism X → X is finite. Then we can apply
the Domination Trick Prop 1.5, and thus it suffices to show that the morphism X→ SpecR
satisfies the Theorem. By construction, this morphism is smooth, projective and fiberwise
of dimension one and thus it suffices to show the Theorem for morphisms which are smooth,
projective and fiberwise of dimension one. �

Proposition 2.4 The Theorem is true for all smooth and projective curves X → S and
constant torsion sheaves.

Proof. By the Proper Base Change we may assume that k is separably closed. To show
that Rpf∗F is constructible, we want to use Prop 1.2, i.e. we have to show that the function

S → Z, s 7→ |(Rpf∗F)s|

is constructible. By Proper Base Change on the diagram

Xs X

Spec k(s) S

fs

we have (Rpf∗Z/(l))s = Rpfs∗Z/(l)s. By a further application of the Proper Base Change
Theorem, we know that Rpf∗Z/(l))s = Hq(Xs,Z/(l)) where we may assume that k(s) is
separably closed. Let us compute these cohomology groups. There are two cases, namely
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either l does or does not divide the characteristic of k. If l - char(k), then

Hq(Xs,Z/(l)) =


(Z/(l))number of connected components of Xs , for q = 0
(Z/(l))2g·number of connected components of Xs , for q = 1
(Z/(l))number of connected components of Xs , for q = 2
0, for q > 2


where g is the genus of Xs. Since the morphism X → S is smooth, the genus of the fiber Xs

is locally constant. By Lemma 1.3, the number of connected components is constructible.
Thus the function s 7→ |Hq(Xs,Z/(l))| is constructible. The computation in the case of
the bad primes uses Artin-Schreier, and we do not do it right now. However, the statement
is true. �
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