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Brauer groups and Galois Cohomology

1 Introduction

The main goal of the next talks is to prove the following theorem:

Theorem 1.1. Let K be a field extension of transcendence degree 1 over an algebraically
closed field k. Then H2

ét(SpecK,Gm) = 0.

Let k be an arbitrary field, and fix a separable closure k
sep

of k, and let Gk :=
Gal(ksep/k). The first step is to show

Theorem 1.2 (Corollary 4.10). There is a natural bijection

H2
(
Gk, (k

sep)×
) ∼= Br(k), (1.1)

where Br(k) is the Brauer group of k.

This is aim of the current talk. The main references are [1, Chapter IV] and [2, Tag
073W].

2 Central simple algebras

2.1 Basic definitions and properties

Let k be a field. In what follows, we use the term k-algebra to refer to an associative
unital k-algebra which is finite dimensional as a k-vector space. In particular, we do
not assume that k-algebras are commutative.

Definition 2.1. A k-algebra is called simple if it contains no proper two sided ideals
other than (0).

Definition 2.2. A k-algebra A is said to be central if its center Z(A) is equal to k. If
A is also simple, we say that it is central simple.

We say a k-algebra D is a division algebra if every non-zero element has a multi-
plicative inverse, i.e., for every a ∈ Dr {0}, there exists a b ∈ D such that ab = 1 = ba.
A field is a commutative division algebra.

Proposition 2.3. Let D be a division algebra over k. Then Mn(D) is a simple k-algebra
for all n > 0.
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Proof. Let I be a two-sided ideal in Mn(D) and suppose that I contains a nonzero
matrix M = (mij). Let mi0j0 be a non-zero entry of M . For each i, j, let eij ∈ Mn(D)
denote the matrix with 1 in the ij-entry and 0 elsewhere. Then

eii0 ·M · ej0j = mi0j0eij.

By assumption, the left hand side is in I, so I contains all the matrices eij and thus
equals Mn(D). It follows that Mn(D) is simple.

2.2 Classification of simple k-algebras

Let A be a k-algebra. By an A-module, we mean a finitely generated left A-module. A
non-zero A-module is called simple if it contains no proper A-submodule.

Lemma 2.4. Any non-zero A-module contains a simple submodule.

Proof. The definition implies that any A-module is finite dimensional as a k-vector
space. Any nonzero submodule of minimal dimension over k will be simple.

Let V be an A-module. Then EndA(V ) inherits the structure of a k-algebra, with
multiplication given by composition.

Lemma 2.5 (Schur’s Lemma). Let S be a simple A-module. The k-algebra EndA(S) is
a division algebra.

Proof. Let γ ∈ EndA(S). Then ker γ is an A-submodule of S and is thus either 0 or all
of S. In the first case γ is an isomorphism and thus has an inverse. Otherwise γ = 0.

There is a natural homomorphism

` : A→ Endk(V ), a 7→ `a, (2.1)

where `a is left multiplication by a.

Proposition 2.6. Let A be a simple k-algebra and let V be an A-module. The homo-
morphism (2.1) is injective.

Proof. Since ker(`) is a two-sided ideal of A which does not contain 1, it follows from
the simplicity of A that ker(`) = (0).

When A is simple, we may thus view it as a k-subalgebra of Endk(V ). Suppose A is
a k-subalgebra of another k-algebra B. We denote the centralizer of A in B by CB(A).

Theorem 2.7 (Double Centralizer Theorem). Let A be a simple k-algebra, and let S
be a simple A-module. Let E := Endk(S). We have CE

(
CE(A)

)
= A.

Proof. See [1, Theorem 1.13].

2



Definition 2.8. Given a k-algebra A, we define its opposite Aopp to be the algebra with
the same underlying set and addition, but with multiplication defined by a · b := ba.

Proposition 2.9. Let A be a k-algebra and let V be a free A-module of rank n. Then
any choice of basis of V induces an isomorphism of k-algebras EndA(V )

∼→Mn(Aopp).

Proof. Let AA denote A regarded as an A-module. For each a ∈ A, right multiplication
by a is an A-linear endomorphism of AA. Let ra ∈ EndA(AA) denote this endomorphism.
Let ϕ ∈ EndA(AA). For a ∈ AA, we have ϕ(a) = aϕ(1) by A-linearity; hence ϕ = rϕ(1).
We thus have an isomorphism of k-vector spaces

EndA(AA)
∼→ A, ϕ 7→ ϕ(1). (2.2)

Since
(ra ◦ rb)(1) = ra

(
rb(1)

)
= ra(b) = ba,

the k-linear map (2.2) becomes an isomorphism EndA(AA)
∼→ Aopp on the level of

k-algebras. This implies the lemma since any choice of A-basis of V induces an isomor-
phism of k-algebras EndA(V )

∼→ EndA(AA
n).

In the next theorem, we classify all simple k-algebras up to isomorphism.

Theorem 2.10 (Artin-Wedderburn). Let A be a simple k-algebra. Then there exists an
n > 1 and a division algebra D such that A ∼= Mn(D).

Proof. By Lemma 2.4, we may choose a simple A-submodule I ⊂ A (a left ideal of
minimal dimension). By Schur’s Lemma, the k-algebra D := EndA(I) is a division
algebra. Since dimk(I) < ∞, it follows that I is finitely generated over D. It is thus a
free D-module of some finite rank n.1 Let E := Endk(S). Since D = CE(A), we have

EndD(I) = CE(D) = CE
(
CE(A)

)
= A;

hence A ∼= Mn(Dopp) by Proposition 2.9.

Proposition 2.11. In Theorem 2.10, the k-algebra A uniquely determines is isomor-
phism class of D and the integer n.

Proof. The minimal left ideals of Mn(D) are of the form L(i), where L(i) is the set of
matrices that are 0 outside of the ith column. Then Mn(D) = ⊕ni=1L(i) and each L(i) ∼=
Dn as Mn(D)-modules. It follows from Theorem 2.10 that all of the minimal left ideals of
A are isomorphic as A-modules. If A ∼= Mn(D), then Dopp ∼= EndMn(D)(D

n) ∼= EndA(I),
where I is any minimal left ideal of A. The integer n is determined by [A : k].

1The same argument as for finitely generated modules over a field applies over a division algebra.
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3 The Brauer group

3.1 Tensor products

Let A and B be k-algebras and let A⊗kB be the tensor product of A and B as k-vector
spaces. There is a unique k-bilinear multiplication on A⊗kB such that (a⊗b)(a′⊗b′) =
(aa′ ⊗ bb′) for all a, a′ ∈ A and b, b′ ∈ B. This makes A⊗k B into a k-algebra.

Proposition 3.1 (Properties of the tensor product). Let A and B be central simple
k-algebras. Then the following are true:

(a) A⊗k B ∼= B ⊗k A.

(b) (A⊗k B)⊗k C ∼= A⊗k (B ⊗k C).

(c) A⊗k Mn(k) ∼= Mn(A).

(d) For k-algebras A and A′ with subalgebras B and B′, we have

CA⊗kA′(B ⊗k B′) = CA(B)⊗k CA′(B′).

(e) A⊗k B is central simple.

(f) A⊗k Aopp ∼= Endk(A) ∼= Mn(k), where n := dimk A.

Proof. See [1]. All of these are immediate except for (d) and (e). Showing that the
product of simple k-algebras is simple requires the notion of primordial elements. In (f),
the natural isomorphism A⊗k Aopp ∼→ Endk(A) is given by a⊗ a′ 7→ (b 7→ aba′).

3.2 Definition of the Brauer group

Let A and B be central simple k-algebras. We say A and B are similar and write
A ∼ B if A ⊗k Mn(k) ∼= B ⊗k Mm(k) for some m and n. We denote the equivalence
class of a central simple k-algebra A by [A]. Let Br(k) be the set of similarity classes of
central simple k-algebras. By Proposition 3.1, the binary operation on Br(k) defined by
[A] · [B] := [A⊗kB] is well-defined and makes Br(k) into an abelian group with identity
element [k]. The inverse of an element [A] ∈ Br(k), is given by [Aopp].

Definition 3.2. The Brauer group of k is the abelian group
(
Br(k), ·

)
.

Remark. In light of the Artin-Wedderburn theorem, we may equivalently define Br(k)
as the set of isomorphism classes of central division algebras over k. Given central
division algebras D1 and D2, the tensor product D1 ⊗D2 is isomorphic to Mn(D3) for
some n and central division algebra D3. The group law is then given by [D1]·[D2] = [D3].
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3.3 Extending the base field

Let L/k be a field extension, and let A be central simple over k.

Proposition 3.3. The tensor product A⊗k L is central simple over L.

Proof. See [1, Lemma 2.15].

Definition 3.4. We say a central simple k-algebra A (or its class in Br(k)) is split by
L if A⊗k L ∼= Mn(L) for some n.

Since Mn(k)⊗k L ∼= Mn(L) and (A⊗k L)⊗L (B ⊗k L) ∼= (A⊗k B)⊗k L. We obtain
a homomorphism

Br(k)→ Br(L), [A] 7→ [A⊗k L].

We denote its kernel by Br(L/k). It consists of the elements of Br(k) which are split
by L.

Lemma 3.5. Let B ⊂ A be a simple k-subalgebra. Let C := CA(B). Then

[B : k][C : k] = [A : k].

Proof. See [1, Theorem 3.1].

Proposition 3.6. Suppose L is a subfield of A containing k. The following are equiva-
lent.

(a) L = CA(L);

(b) [A : k] = [L : k]2;

(c) L is a maximal commutative subalgebra of A.

Proof. (a)⇔(b). Clearly L ⊂ C(L). Then use [A : k] = [L : k][C(L) : k].

(b)⇒(c). Let L ⊂ L′ ⊂ A be maximal commutative. Then L′ ⊂ C(L); hence

[A : k] > [L : k][L′ : k] > [L : k]2.

Thus [L′ : k] = [L : k].

(c)⇒(a). If L ( C(L), then L[γ] is a commutative subalgebra of A for γ ∈ C(L)r L.

Proposition 3.7. The field L splits A if and only if there exists a B ∼ A containing L
such that

[B : k] = [L : k]2.

In particular, if L ⊂ A has degree [A : k]1/2 over k, then L splits A.
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Proof sketch. If L splits A, then L also splits Aopp, so Aopp ⊗k L = EndL(V ), for
some finite dimensional L-vector space V . Define B := CEndk(V )(A

opp). Since L =
CEndk(V )(A

opp ⊗k L), it follows that L ⊂ B. One can show that B satisfies the required
conditions.

For the converse, if suffices to show that L splits B. We have CB(L) = L; hence
CB⊗kBopp(1 ⊗k L) = B ⊗k L. Identifying B ⊗ Bopp with Endk(B) sends C(1 ⊗ L) to
EndL(B). Hence B ⊗k L ∼= EndL(B).

Corollary 3.8. Let D be a central division algebra over k such that [D : k] = [L : k]2.
The following are equivalent:

(a) L splits D.

(b) There exists a homomorphism of k-algebras L → D whose image is a maximal
subfield of D.

Proposition 3.9. Every central division algebra over k contains a maximal separable
subfield which is finite over k.

Proof. See [2, Tag 0752].

Theorem 3.10. We have Br(k) =
⋃
L Br(L/k), where L runs over all finite Galois

extensions in ksep.

Proof. By Corollary 3.8 and Proposition 3.9, every central division algebra D is split by
a finite separable extension of k; hence by a Galois extension.

4 Br(k) and Galois cohomology

Let L/k be a finite Galois field extension, and let G := Gal(L/k). Let A(L/k) denote
the set of central simple k-algebras A containing L such that CA(L) = L.

Theorem 4.1 (Noether-Skolem). Let f, g : A→ B be homomorphisms of k-algebras. If
A is simple and B is central simple, then there exists an invertible element b ∈ B such
that f(a) = b · g(a) · b−1 for all a ∈ A.

Proof sketch. IfB = Mn(k), then f and g define actions of A on kn. Let Vf and Vg denote
kn with these actions. Any two A-modules with the same dimension are isomorphic.
(This follows from the fact that all A-modules are semisimple and all simple A-modules
are isomorphic. See [1, Corollary 1.9].) Thus ∃b ∈ B such that f(a) · b = b · g(a) for all
a ∈ A.

In general, use the fact that B ⊗ Bopp is a matrix algebra over k and consider
f ⊗1, g⊗1: A⊗Bopp → B⊗Bopp. Then ∃b ∈ B⊗Bopp which conjugates f ⊗1 to g⊗1.
Show that b ∈ CB⊗Bopp(k ⊗Bopp) = B ⊗ k. Then b = b0 ⊗ 1 and b0 does the job.
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Corollary 4.2. Let B be a central simple k-algebra, and let A1 and A2 be simple k-
subalgebras of A. Any isomorphism f : A1 → A2 is induced by an inner automorphism
of A.

Construction 1. Fix A ∈ A(L/k). For every σ ∈ G, there exists by Corollary 4.2 an
element eσ ∈ A× such that

σa = eσae
−1
σ , for all a ∈ L ⊂ A. (4.1)

If fσ ∈ A also satisfies (4.1), then for all a ∈ L we have

f−1
σ eσa = af−1

σ eσ.

It follows that f−1
σ eσ ∈ CA(L) = L; and hence f−1

σ eσ ∈ L×. Fix a choice of eσ for each
σ ∈ G. Since eσeτ satisfies (4.1) for στ, it follows that

eσeτ = ϕ(σ, τ)eστ (4.2)

for some ϕ(σ, τ) ∈ L×. We thus obtain a map

ϕ : G×G→ L×, (σ, τ) 7→ ϕ(σ, τ).

Proposition 4.3. The map ϕ is a 2-cocycle.

Proof. We must verify that dϕ = 1, which in this case amounts to showing that

ρϕ(σ, τ) · ϕ(ρ, στ) = ϕ(ρ, σ)ϕ(ρσ, τ). (4.3)

This follows from the associative law:

eρ(eσeτ ) = eρ(ϕ(σ, τ)eστ ) = ρϕ(σ, τ) · ϕ(ρ, στ) · eρστ .

and
(eρeσ)eτ = ϕ(ρ, σ)eρσeτ = ϕ(ρ, σ)ϕ(ρσ, τ) · eρστ .

A different choice of eσ’s leads to a cohomologous cocycle, and we thereby obtain a
well-defined map

γ̃ : A(L/k)→ H2(G,L×). (4.4)

Lemma 4.4. The (eσ)σ∈G form an L-basis for A.

Proof. See [1, Lemma 3.12]. For dimension reasons, it suffices to show that the eσ are
linearly independent.

Proposition 4.5. Let A,A′ ∈ A(L/k). Then A ∼= A′ if and only if γ̃(A) = γ̃(A′).
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Proof. By Lemma 4.4, the algebra A is uniquely determined by (eσ)σ and the multipli-
cation given by (4.1) and (4.2). If γ̃(A) = γ̃(A′), then the map

A→ A′,
∑
σ

`σeσ 7→
∑
σ

`σe
′
σ

is an isomorphism of k-algebras. Conversely, suppose there is an isomorphism f : A
∼→

A′. Using the Noether-Skolem theorem, after conjugating by an element of A′ we may
assume that f(L) = L and f |L = idL. Then (f(eσ))σ satisfies (4.1) and (4.2) and defines
the same cocycle.

We thus obtain an injective map

γ : A(L/k)/∼= ↪→ H2(G,L×). (4.5)

Our aim is to show that γ is bijective. To do this, we construct an inverse.

Definition 4.6. A 2-cocycle ϕ : G×G→ L× is normalized if ϕ(1, 1) = 1.

Every cohomology class contains a normalized 2-cycle. Indeed, given a 2-cocycle ϕ,
we can twist by dg, for g : G→ L×, σ 7→ ϕ(1, 1), to obtain a normalized one.

Construction 2. Let ϕ : G×G→ L× be a normalized cocycle. Let A(ϕ) :=
⊕

σ∈G Leσ.
We make A(ϕ) into a k-algebra by endowing it with the multiplication induced by (4.1)
and (4.2). Since ϕ is normalized, equation (4.2) implies that ϕ(1, σ) = ϕ(σ, 1) = 1 for
all σ ∈ G; hence e1 acts as the multiplicative identity. The cocycle condition (4.3) says
that A(ϕ) is associative. We identify L with the subfield Le1 of A(ϕ).

Proposition 4.7. The algebra A(ϕ) is in A(L/k).

Proof. Let a =
∑

σ `σeσ ∈ A(ϕ) and let ` ∈ L. Comparing `a =
∑

σ ``σeσ and a` =∑
σ `σσ`eσ, we see that a ∈ CA(ϕ)(L) if and only if a = `1e1 ∈ L. Hence CA(ϕ)(L) = L.

Similarly, if a ∈ Z(A(ϕ)) ⊂ L, then for all σ ∈ G, we have aeσ = eσa = (σa)eσ. Thus
a ∈ k, and A(ϕ) is central. For the simplicity, see [1, Lemma 3.13].

Proposition 4.8. Let ϕ and ϕ′ be cohomologous 2-cocycles. Then the k-algebras A(ϕ) ∼=
A(ϕ′) are isomorphic.

Proof sketch. If ϕ and ϕ′ are cohomologous, then there exists a : G→ L× such that

a(σ) · σa(τ) · ϕ′(σ, τ) = a(στ) · ϕ(σ, τ).

The map A(ϕ)→ A(ϕ′), eσ 7→ a(σ)e′σ is a k-algebra isomorphism.

We thus obtain a map

α : H2(G,L×)→ A(L/k)/∼=, [ϕ] 7→ A(ϕ). (4.6)

which is inverse to (4.5). By Propositions 3.6 and 3.7, if A ∈ A(L/k), then L splits A.
We thus have a natural map

A(L/k)/∼= 7→ Br(L/k), A 7→ [A]. (4.7)
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Theorem 4.9. The map H2
(
G,L×

)
→ Br(L/k), [ϕ] 7→ [A(ϕ)] is a bijection.

Proof sketch. It suffices to show that (4.7) is bijective.

Injectivity. If A ∼ A′, there is a central division algebra D such that A ∼ D ∼ A′,
i.e. A ∼= Mn(D) and A′ ∼= M ′

n(D). Since [A : k] = [L : k]2 = [A′ : k], it follows that
n = n′, so A ∼= A′.

Surjectivity. Follows directly from Proposition 3.7.

Let Gk := Gal(ksep/k).

Corollary 4.10. There is a natural bijection H2
(
Gk, (k

sep)×
) ∼→ Br(k).

Proof sketch. For every tower of E ⊃ L ⊃ k of Galois extensions of k, the diagram

H2(L/k) //

��

Br(L/k)

��
H2(E/k) // Br(E/k).

commutes. Take inductive limits (use Theorem 3.10).
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