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BRAUER GROUPS AND GALOIS COHOMOLOGY

1 Introduction

The main goal of the next talks is to prove the following theorem:

Theorem 1.1. Let K be a field extension of transcendence degree 1 over an algebraically
closed field k. Then H%(Spec K, G,,) = 0.

Let k be an arbitrary field, and fix a separable closure & of k, and let G} =
Gal(k*P /k). The first step is to show

Theorem 1.2 (Corollary 4.10). There is a natural bijection
H*(Gy, (K*P)*) = Br(k), (1.1)
where Br(k) is the Brauer group of k.

This is aim of the current talk. The main references are [1, Chapter IV] and [2, Tag
073W].

2 Central simple algebras

2.1 Basic definitions and properties

Let k be a field. In what follows, we use the term k-algebra to refer to an associative
unital k-algebra which is finite dimensional as a k-vector space. In particular, we do
not assume that k-algebras are commutative.

Definition 2.1. A k-algebra is called simple if it contains no proper two sided ideals
other than (0).

Definition 2.2. A k-algebra A is said to be central if its center Z(A) is equal to k. If
A is also simple, we say that it is central simple.

We say a k-algebra D is a division algebra if every non-zero element has a multi-
plicative inverse, i.e., for every a € D \ {0}, there exists a b € D such that ab = 1 = ba.
A field is a commutative division algebra.

Proposition 2.3. Let D be a division algebra over k. Then M, (D) is a simple k-algebra
for alln > 0.



Proof. Let I be a two-sided ideal in M, (D) and suppose that I contains a nonzero
matrix M = (m;;). Let m;;, be a non-zero entry of M. For each i, j, let e;; € M, (D)
denote the matrix with 1 in the 7j-entry and 0 elsewhere. Then

Ciig * M - €joj = Migjo €ij-

By assumption, the left hand side is in I, so I contains all the matrices e;; and thus
equals M, (D). It follows that M, (D) is simple. O

2.2 Classification of simple k-algebras

Let A be a k-algebra. By an A-module, we mean a finitely generated left A-module. A
non-zero A-module is called simple if it contains no proper A-submodule.

Lemma 2.4. Any non-zero A-module contains a simple submodule.

Proof. The definition implies that any A-module is finite dimensional as a k-vector
space. Any nonzero submodule of minimal dimension over k will be simple. O

Let V be an A-module. Then End4 (V') inherits the structure of a k-algebra, with
multiplication given by composition.

Lemma 2.5 (Schur’s Lemma). Let S be a simple A-module. The k-algebra End4(S) is
a division algebra.

Proof. Let v € End4(S). Then ker~ is an A-submodule of S and is thus either 0 or all
of S. In the first case 7 is an isomorphism and thus has an inverse. Otherwise y =0. [

There is a natural homomorphism
(: A— Endp(V), aw L, (2.1)
where /, is left multiplication by a.

Proposition 2.6. Let A be a simple k-algebra and let V' be an A-module. The homo-
morphism (2.1) is injective.

Proof. Since ker({) is a two-sided ideal of A which does not contain 1, it follows from
the simplicity of A that ker(¢) = (0). O

When A is simple, we may thus view it as a k-subalgebra of End, (V). Suppose A is
a k-subalgebra of another k-algebra B. We denote the centralizer of A in B by Cg(A).

Theorem 2.7 (Double Centralizer Theorem). Let A be a simple k-algebra, and let S
be a simple A-module. Let E :=End,(S). We have Cp(Cg(A)) = A.

Proof. See [1, Theorem 1.13]. O



Definition 2.8. Given a k-algebra A, we define its opposite A°PP to be the algebra with
the same underlying set and addition, but with multiplication defined by a - b := ba.

Proposition 2.9. Let A be a k-algebra and let V' be a free A-module of rank n. Then
any choice of basis of V induces an isomorphism of k-algebras End (V) = M,,(A°PP).

Proof. Let 4A denote A regarded as an A-module. For each a € A, right multiplication
by a is an A-linear endomorphism of 4 A. Let r, € Enda(4A) denote this endomorphism.
Let ¢ € Enda(aA). For a € 1A, we have p(a) = ap(1) by A-linearity; hence ¢ = r4).
We thus have an isomorphism of k-vector spaces

Enda(4A) = A, o= o(1). (2.2)

Since
(raory)(l) =71, (Tb(l)) = 1,(b) = ba,

the k-linear map (2.2) becomes an isomorphism Enda(4A) = A°PP on the level of
k-algebras. This implies the lemma since any choice of A-basis of V' induces an isomor-
phism of k-algebras End (V) = Enda(4A4™). O

In the next theorem, we classify all simple k-algebras up to isomorphism.

Theorem 2.10 (Artin-Wedderburn). Let A be a simple k-algebra. Then there exists an
n > 1 and a division algebra D such that A = M,(D).

Proof. By Lemma 2.4, we may choose a simple A-submodule I C A (a left ideal of
minimal dimension). By Schur’s Lemma, the k-algebra D := End,(I) is a division
algebra. Since dimy () < oo, it follows that I is finitely generated over D. It is thus a
free D-module of some finite rank n.! Let E := Endg(S). Since D = Cg(A), we have

hence A = M, (D°PP) by Proposition 2.9. O

Proposition 2.11. In Theorem 2.10, the k-algebra A uniquely determines is isomor-
phism class of D and the integer n.

Proof. The minimal left ideals of M, (D) are of the form L(i), where L(i) is the set of
matrices that are 0 outside of the ith column. Then M,,(D) = &?_, L(i) and each L(i) =
D™ as M, (D)-modules. It follows from Theorem 2.10 that all of the minimal left ideals of
A are isomorphic as A-modules. If A = M, (D), then D°P? = Endy, (p)(D™) = End4(]),
where [ is any minimal left ideal of A. The integer n is determined by [A : k]. O

!The same argument as for finitely generated modules over a field applies over a division algebra.



3 The Brauer group

3.1 Tensor products

Let A and B be k-algebras and let A®j, B be the tensor product of A and B as k-vector
spaces. There is a unique k-bilinear multiplication on A®y B such that (a®b)(a’ @b') =
(aa’ @ bb') for all a,a’ € A and b, b’ € B. This makes A ®; B into a k-algebra.

Proposition 3.1 (Properties of the tensor product). Let A and B be central simple
k-algebras. Then the following are true:

(a) A®, B = B®, A.

(b) (A®, B) @, C 2 AR, (B, 0).

(c) A®y M, (k)= M,(A).

(d) For k-algebras A and A" with subalgebras B and B’, we have

CA@kA/(B Xk B,) = CA(B> Rk OA/(B/>.

(e) A®y B is central simple.
(f) A®y A°PP = Endy(A) = M, (k), where n := dimy, A.

Proof. See [1]. All of these are immediate except for (d) and (e). Showing that the
product of simple k-algebras is simple requires the notion of primordial elements. In (f),
the natural isomorphism A ®; A°PP = Endy,(A) is given by a ® a’ + (b + abad’). O

3.2 Definition of the Brauer group

Let A and B be central simple k-algebras. We say A and B are similar and write
A~ B if A®, M, (k) = B ® M, (k) for some m and n. We denote the equivalence
class of a central simple k-algebra A by [A]. Let Br(k) be the set of similarity classes of
central simple k-algebras. By Proposition 3.1, the binary operation on Br(k) defined by
[A] - [B] := [A®y, B] is well-defined and makes Br(k) into an abelian group with identity
element [k]. The inverse of an element [A] € Br(k), is given by [A°PP].

Definition 3.2. The Brauer group of k is the abelian group (Br(kz), )

Remark. In light of the Artin-Wedderburn theorem, we may equivalently define Br(k)
as the set of isomorphism classes of central division algebras over k. Given central
division algebras Dy and Dy, the tensor product Dy ® Dy is isomorphic to M, (Ds3) for
some n and central division algebra D3. The group law is then given by [D;]-[Ds] = [D3].



3.3 Extending the base field

Let L/k be a field extension, and let A be central simple over k.
Proposition 3.3. The tensor product A ®y L is central simple over L.
Proof. See [1, Lemma 2.15]. O

Definition 3.4. We say a central simple k-algebra A (or its class in Br(k)) is split by
Lif A®y L = M,(L) for some n.

Since Mn<k3) Rk L= Mn(L) and (A Rk L) Kr, (B Rk L) = (A R B) Rk L. We obtain
a homomorphism

Br(k) — Br(L), [A]— [A®y L].

We denote its kernel by Br(L/k). It consists of the elements of Br(k) which are split
by L.

Lemma 3.5. Let B C A be a simple k-subalgebra. Let C' := C4(B). Then

[B: K|[C: k] =[A: k]

Proof. See [1, Theorem 3.1]. ]
Proposition 3.6. Suppose L is a subfield of A containing k. The following are equiva-
lent.

(a) L =Cu(L);

(b) 1A K] = [L: K
(c) L is a maximal commutative subalgebra of A.

Proof. (a)<(b). Clearly L € C(L). Then use [A: k| = [L: k][C(L) : k.
(b)=(c). Let L C L' C A be maximal commutative. Then L' C C(L); hence

[A:k] > [L:K|[L : k] > [L: k>

Thus [L': k] =[L : k].
(c)=(a). If L € C(L), then L[y] is a commutative subalgebra of A for v € C(L)~\ L.
[

Proposition 3.7. The field L splits A if and only if there exists a B ~ A containing L
such that
[B:k|=[L:k?"

In particular, if L C A has degree [A : k]'/? over k, then L splits A.



Proof sketch. 1f L splits A, then L also splits A°PP, so A°®? ®, L = End;(V), for
some finite dimensional L-vector space V. Define B := Cgpq,(v)(A%P). Since L =
Chnd, (v)(A°PP @4 L), it follows that L C B. One can show that B satisfies the required
conditions.

For the converse, if suffices to show that L splits B. We have Cg(L) = L; hence
Cpepporn(1 @4 L) = B @ L. Identifying B ® B with End,,(B) sends C(1 ® L) to
Endy(B). Hence B ®; L = Endy(B). O

Corollary 3.8. Let D be a central division algebra over k such that [D : k] = [L : k]*.
The following are equivalent:

(a) L splits D.

(b) There exists a homomorphism of k-algebras L — D whose image is a mazximal

subfield of D.

Proposition 3.9. FEvery central division algebra over k contains a mazrimal separable

subfield which is finite over k.
Proof. See [2, Tag 0752]. O

Theorem 3.10. We have Br(k) = |J, Br(L/k), where L runs over all finite Galois
extensions in k5P.

Proof. By Corollary 3.8 and Proposition 3.9, every central division algebra D is split by
a finite separable extension of k; hence by a Galois extension. n

4 Br(k) and Galois cohomology

Let L/k be a finite Galois field extension, and let G := Gal(L/k). Let A(L/k) denote
the set of central simple k-algebras A containing L such that Cy(L) = L.

Theorem 4.1 (Noether-Skolem). Let f,g: A — B be homomorphisms of k-algebras. If
A is simple and B is central simple, then there exists an invertible element b € B such
that f(a) =b-g(a)-b~! for alla € A.

Proof sketch. 1f B = M, (k), then f and ¢ define actions of A on k". Let V; and V,, denote
k™ with these actions. Any two A-modules with the same dimension are isomorphic.
(This follows from the fact that all A-modules are semisimple and all simple A-modules
are isomorphic. See [1, Corollary 1.9].) Thus 3b € B such that f(a)-b =10 g(a) for all
a € A.

In general, use the fact that B ® B°PP is a matrix algebra over k£ and consider
f®lgel: A®Q B®® - B® B°P. Then 3b € B ® B°PP which conjugates f®1 to g® 1.
Show that b € Cpgperr (k ® B®P?) = B® k. Then b = by ® 1 and by does the job. O



Corollary 4.2. Let B be a central simple k-algebra, and let Ay and Ay be simple k-
subalgebras of A. Any isomorphism f: Ay — As is induced by an inner automorphism

of A.

Construction 1. Fix A € A(L/k). For every o € G, there exists by Corollary 4.2 an
element e, € A* such that

oa = eyae;’, forallac L C A (4.1)
If f, € A also satisfies (4.1), then for all a € L we have
fleqa = af; e,

It follows that f;le, € Ca(L) = L; and hence f, 'e, € L*. Fix a choice of e, for each
o € G. Since eye, satisfies (4.1) for o, it follows that

eser = p(0,T)esr (4.2)
for some ¢(o,7) € L*. We thus obtain a map
0: GxG—=L*, (0,7) p(o,7).
Proposition 4.3. The map ¢ is a 2-cocycle.

Proof. We must verify that dp = 1, which in this case amounts to showing that

pp(o,7) - (p,o1) = w(p,0)p(po, 7). (4.3)

This follows from the associative law:

6/1(6067) = ep<¢(0—7 7—)607') = pgD(U, 7_) : (10(@ 07—) *€por-

and
(ePeU)eT = @(:07 U)epﬂeT = (p(pa O')QO(pO’, T) : epor-
]

A different choice of e,’s leads to a cohomologous cocycle, and we thereby obtain a
well-defined map
3: A(L/k) — H*(G,L*). (4.4)

Lemma 4.4. The (e,)scc form an L-basis for A.

Proof. See [1, Lemma 3.12]. For dimension reasons, it suffices to show that the e, are
linearly independent. [

Proposition 4.5. Let A, A" € A(L/k). Then A= A" if and only if ¥(A) = 3(A').



Proof. By Lemma 4.4, the algebra A is uniquely determined by (e, ), and the multipli-
cation given by (4.1) and (4.2). If 4(A) = 4(A’), then the map

A— A loey — (€
> >t

is an isomorphism of k-algebras. Conversely, suppose there is an isomorphism f: A =
A’. Using the Noether-Skolem theorem, after conjugating by an element of A’ we may
assume that f(L) = L and f|, =id,. Then (f(e,)), satisfies (4.1) and (4.2) and defines
the same cocycle. O]

We thus obtain an injective map
v: A(L/k)/~ — H*(G, L*). (4.5)
Our aim is to show that v is bijective. To do this, we construct an inverse.
Definition 4.6. A 2-cocycle p: G x G — L* is normalized if p(1,1) = 1.

Every cohomology class contains a normalized 2-cycle. Indeed, given a 2-cocycle ¢,
we can twist by dg, for g: G — L*, 0 — ¢(1, 1), to obtain a normalized one.

Construction 2. Let p: GxG — L* be a normalized cocycle. Let A(¢) := @, Leo.
We make A(y) into a k-algebra by endowing it with the multiplication induced by (4.1)
and (4.2). Since ¢ is normalized, equation (4.2) implies that ¢(1,0) = ¢(0,1) = 1 for
all o € G hence e; acts as the multiplicative identity. The cocycle condition (4.3) says
that A(y) is associative. We identify L with the subfield Le; of A(yp).

Proposition 4.7. The algebra A(p) is in A(L/k).

Proof. Let a = ) _l,e, € A(p) and let £ € L. Comparing la = Y _{ll,e, and al =
> o looles, we see that a € Cy(p)(L) if and only if @ = f1e; € L. Hence Cyy)(L) = L.
Similarly, if a« € Z(A(p)) C L, then for all ¢ € G, we have ae, = e,a = (ca)e,. Thus
a € k, and A(yp) is central. For the simplicity, see [1, Lemma 3.13]. O

Proposition 4.8. Let ¢ and ¢’ be cohomologous 2-cocycles. Then the k-algebras A(p) =
A(¢') are isomorphic.

Proof sketch. If p and ¢’ are cohomologous, then there exists a: G — L* such that
a(o) -oa(t) - ¢'(0,7) = aloT) - p(o,T).
The map A(p) = A(¢'), e, — a(o)el is a k-algebra isomorphism. O
We thus obtain a map
a: H*(G,L*) = A(L/K) /=, [p] — A(p). (4.6)

which is inverse to (4.5). By Propositions 3.6 and 3.7, if A € A(L/k), then L splits A.
We thus have a natural map

A(L/k)/~+— Br(L/k), A~ [A]. (4.7)

8



Theorem 4.9. The map H*(G,L*) — Br(L/k), [¢] — [A(p)] is a bijection.

Proof sketch. It suffices to show that (4.7) is bijective.

Injectivity. If A ~ A’, there is a central division algebra D such that A ~ D ~ A’,
ie. A M,(D)and A" = M/ (D). Since [A : k| = [L : kJ> = [A’ : k], it follows that
n=n',so A=A

Surjectivity. Follows directly from Proposition 3.7. m
Let Gy := Gal(k*P /k).
Corollary 4.10. There is a natural bijection H* (G, (k*P)*) = Br(k).

Proof sketch. For every tower of E D L D k of Galois extensions of k, the diagram

H?(L/k) — Br(L/k)

| |

H?(E/k) —= Br(E/k).

commutes. Take inductive limits (use Theorem 3.10). [
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